
MX for Area Detectors

William M. Lavender
Illinois Institute of Technology

Chicago, IL 60616 USA

October 26, 2006

2

MX has been developed by the Illinois Institute of Technology and is available under the following MIT X11 style
license.

Copyright 1999 Illinois Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL ILLINOIS INSTITUTE OF TECHNOLOGY BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Illinois Institute
of Technology shall not be used in advertising or otherwise to promote
the sale, use or other dealings in this Software without prior written
authorization from Illinois Institute of Technology.

Contents

1 Introduction 7
1.1 Driver and Platform Support . 7

1.1.1 MX Clients . 7
1.1.2 MX Server . 7

1.2 Installation from Prebuilt Binaries . 8
1.3 Installation from Source . 9

1.3.1 Before Building MX . 9
1.3.2 Downloading MX . 10
1.3.3 Building MX for the Detector Computer . 11
1.3.4 Building MX for Client Computers . 12

1.4 Configuring MX . 12
1.4.1 Environment Variables . 13
1.4.2 Configuring MX for Client Computers . 13
1.4.3 Configuring MX for Area Detector Servers . 14
1.4.4 Configuring mxserver.dat . 15
1.4.5 Running the MX Server . 16

2 Using the MX Area Detector API 19
2.1 Building an MX Client . 19
2.2 Initializing MX . 21

2.2.1 mxsetupdatabase() . 21
2.2.2 mxsetupdatabasefrom array() . 22
2.2.3 mxget record() . 23
2.2.4 Redirecting Output . 23
2.2.5 Example for mxsetupdatabase() . 24
2.2.6 Example for mxsetupdatabasefrom array() . 26

2.3 Reading and Writing Area Detector Settings . 28
2.4 Detector Properties . 29
2.5 Sequences . 29
2.6 Actions . 31
2.7 Frame Transfer . 31
2.8 Frame Correction . 32
2.9 Region of Interest (ROI) Functions . 33
2.10 Image Functions . 33

3

4 CONTENTS

2.11 Example Programs . 34
2.11.1 Acquiring and Saving Images - example2.c . 35
2.11.2 Measuring Detector Dark Currents - example3.c . 43
2.11.3 Reading Out a Region Of Interest (ROI) - example4.c . 46

3 Area Detector API Reference 53
3.1 Area Detector Definitions . 53

3.1.1 Area Detector Status Word . 53
3.1.2 Frame Buffer Types . 53

3.2 mx areadetectorabort . 54
3.3 mx areadetectorarm . 54
3.4 mx areadetectorcopy frame . 55
3.5 mx areadetectorcorrectframe . 55
3.6 mx areadetectorget binsize . 56
3.7 mx areadetectorget bytesper frame . 56
3.8 mx areadetectorget bytesper pixel . 57
3.9 mx areadetectorget correctionflags . 57
3.10 mxareadetectorget extendedstatus . 57
3.11 mxareadetectorget frame . 58
3.12 mxareadetectorget framesize . 58
3.13 mxareadetectorget imageformat . 59
3.14 mxareadetectorget last framenumber . 59
3.15 mxareadetectorget maximumframesize . 60
3.16 mxareadetectorget propertydouble . 60
3.17 mxareadetectorget propertylong . 61
3.18 mxareadetectorget propertystring . 61
3.19 mxareadetectorget roi . 61
3.20 mxareadetectorget roi frame . 62
3.21 mxareadetectorget sequence . 63
3.22 mxareadetectorget sequenceparameters . 63
3.23 mxareadetectorget status . 64
3.24 mxareadetectorget subframesize . 64
3.25 mxareadetectorget trigger mode . 65
3.26 mxareadetectorget usescaleddark currentflag . 65
3.27 mxareadetectoris busy . 66
3.28 mxareadetectorload frame . 66
3.29 mxareadetectormeasurecorrectionframe . 67
3.30 mxareadetectormeasuredark currentframe . 67
3.31 mxareadetectormeasureflood field frame . 68
3.32 mxareadetectorreadoutframe . 68
3.33 mxareadetectorsaveframe . 69
3.34 mxareadetectorsetbinsize . 69
3.35 mxareadetectorsetbulb mode . 70
3.36 mxareadetectorset circular multiframemode . 70
3.37 mxareadetectorset continuousmode . 71
3.38 mxareadetectorset correctionflags . 71

CONTENTS 5

3.39 mxareadetectorset framesize . 72
3.40 mxareadetectorsetgeometricalmode . 72
3.41 mxareadetectorset imageformat . 73
3.42 mxareadetectorsetmultiframemode . 73
3.43 mxareadetectorsetoneshotmode . 74
3.44 mxareadetectorsetpropertydouble . 74
3.45 mxareadetectorsetpropertylong . 75
3.46 mxareadetectorsetpropertystring . 75
3.47 mxareadetectorset roi . 76
3.48 mxareadetectorset sequenceparameters . 77
3.49 mxareadetectorset strobemode . 77
3.50 mxareadetectorset subframesize . 78
3.51 mxareadetectorset trigger mode . 78
3.52 mxareadetectorsetusescaleddark currentflag . 79
3.53 mxareadetectorsetupframe . 79
3.54 mxareadetectorstart . 80
3.55 mxareadetectorstop . 81
3.56 mxareadetectortransferframe . 81
3.57 mxareadetectortrigger . 81

4 Image API Reference 83
4.1 Image Definitions . 83

4.1.1 Image Formats . 83
4.1.2 Datafile Formats . 83

4.2 mx imagealloc . 84
4.3 mx imagecopy 1d pixel array . 85
4.4 mx imagecopy frame . 86
4.5 mx imagefree . 86
4.6 mx imageget exposuretime . 87
4.7 mx imageget format namefrom type . 87
4.8 mx imageget format type from name . 87
4.9 mx imageget frame from sequence . 88
4.10 mximageget imagedatapointer . 88
4.11 mximagereadfile . 89
4.12 mximagewrite file . 89

5 Utility API Reference 91
5.1 mx get record . 91
5.2 mx setupdatabase . 91
5.3 mx setupdatabasefrom array . 92

A Using motor to Test an MX Area Detector 93
A.1 Motor Commands . 94

A.1.1 exit . 94
A.1.2 show record . 94
A.1.3 areadetector . 94

6 CONTENTS

B Python 99

Chapter 1

Introduction

This manual describes how to install, configure, and use the MX beamline control toolkithttp://mx.iit.edu/for use
with area detectors. Currently, the only supported area detector hardware is the PCCD-170170 from AVIEX LLC,
but it is anticipated that the list of supported detectors will grow with time.

MX is capable of controlling a wide variety of other devices such as motors, counter/timers, MCAs, MCSs, and
so forth. However, since this is of limited relevance to sites that only use MX for its area detector support, support for
these other devices will not be described further in this manual.

1.1 Driver and Platform Support

1.1.1 MX Clients

Thenetworkarea detectordriver used by MX area detector clients runs on all of the platforms currently supported
by MX. As of October 2006, the supported plaftorms include:BSD, Cygwin, DJGPP, eCos, HP-UX, Irix, Linux,
MacOS X, QNX, RTEMS, Solaris, Tru64, VMS, VxWorks, and Windows (Win32).

1.1.2 MX Server

The platforms supported by the MX server depend on the drivers used by your area detector.

• AVIEX PCCD-170170 CCD detector

For this detector, the top level area detector driver,pccd170170, is layered on top of the video input driver,
epix xclib video input, for the imaging board used to read out frames from the AVIEX camera head. The video
board itself is a PIXCI E4 frame grabber from EPIX, Inc. which is described herehttp://www.epixinc.com/products/pixcie4.htm.
The PIXCI E4 is a PCI Express board that plugs into an x4 PCI Express slot.

Please note that the company, EPIX, Inc., has absolutely no relation to the control system called EPICS
http://www.aps.anl.gov/epics/. The similarity of the names is completely a coincidence.

The MXepix xclib video inputdriver depends on the XCLIB libraryhttp://www.epixinc.com/products/xclib.htm
provided by EPIX, Inc. for use with their PIXCI line of imaging boards. EPIX, Inc. currently provides versions
of XCLIB for Windows XP, Windows 2000, Linux, and 32-bit DOS. They have stated that XCLIB for 64-bit
Linux and Windows will be available by the end of 2006.

7

8 CHAPTER 1. INTRODUCTION

At present, MX support for the PIXCI E4 has only been tested in the following environments:

– Fedora Core 5 Linux (x86) with GCC 4.1.1

– Windows XP SP2 with Visual C++ 2005 Express.

Currently, our recommendation is to use Linux on the detector control computer. The main reason for this is
that it is easier to do remote configuration and debugging of a Linux based system. If your firewall allows SSH
connections to the detector control system, that is all that is needed to enable remote support.

It might be possible to get the Linux support working on another distribution, but this depends on the portability
of the binary Linux module provided by EPIX, Inc. with their imaging boards. However, portability of the EPIX
binary module for Linux has not yet been significantly tested by us. The simplest path would be to stick with
Fedora Core, although Red Hat Enterprise Linux is quite similar and would probably work as well.

Please note that the EPIX XCLIB programming library is not freely available for download. In order to get it,
you must purchase a single developer XCLIB license from EPIX, Inc. As of late 2006, this license costs $495.

• Software emulated area detector

The soft area detectordriver attempts to emulate enough of the behavior of a real area detector that higher
level code will mostly not notice the difference. Thesoft area detectordriver is layered on top of a video input
driver in a similar manner to the design of thepccd170170driver mentioned above. The video input driver can
either be an emulated video input or a real video input. The following two choices are the most useful ones:

– Software emulated video input
Thesoft video input driver generates test images and returns them to the caller. The type of test image
is, in principle, selectable. However, at the moment the only available option is to return a repeating
sequence of four test images, each of which has a maximum in a different corner of the image. This driver
is available on all MX platforms.

– Video4Linux 2
The v4l2 input driver uses any commercial frame grabber or TV capture card that has a Video4Linux
version 2 driver. Video4Linux version 1 drivers are not supported. With this driver, it is possible to
easily change the test image merely by pointing your video camera at a different target. Unfortunately,
Video4Linux 2 only supports 8-bit greyscale images, but the MX area detector support will automatically
adjust to compensate for this.

Obviously, this driver is only available on Linux platforms. Not all Linux distributions include the header
file /usr/include/linux/videodev2.hin their coreglibc development package, so you must explicitly en-
able this driver by making the following definition in the filemx/libMx/mxconfig.h:

#define HAVE_VIDEO_4_LINUX_2 1

1.2 Installation from Prebuilt Binaries

Although the server and the client may use different sets of binaries, the process of installation is essentially the
same for both computers. Thus, the following description applies to both the server and its clients unless otherwise
indicated.

Prebuilt Binaries for MX are generally delivered in the form of .tar.gz archives or .zip archives. The first thing
to do is to decide which directory you want to install MX in. Although you are free to install the binaries anywhere

1.3. INSTALLATION FROM SOURCE 9

you want, the conventional place to install MX is either in the directory/opt/mx on Linux/Unix or the directory
c:\opt\mx on Windows. On Linux/Unix systems with support for symbolic links, we commonly install to a directory
with a name that contains the MX version number such as/opt/mx-1.4.0and then use a symbolic link to link this
name to/opt/mx. In this case, the process looks like this

cd /opt
mkdir mx-1.4.0
ln -s mx-1.4.0 mx

The last step of this process cannot be done on Windows systems, since they do not support symbolic links.
At this point, you may jump forward to Section 1.4.

1.3 Installation from Source

We describe here the process of building and installing MX from source code on the detector server computer and
follow that with comments about the client computer.

1.3.1 Before Building MX

For real area detector hardware, MX controls the image capture card using software libraries provided by the maker
of the image capture card.

EPIX PIXCI cards

Prior to building the server side copy of MX, you must download and install the XCAP and XCLIB packages from the
EPIX web site and FTP site, which you can find on the web pagehttp://www.epixinc.com/support/files.htm. This web
page redirects you to various directories on their FTP site underneath the directoryftp://ftp.epixinc.com/software/.
Occasionally, newer versions may be found in the directoryftp://ftp.epixinc.com/downloads/and you may need to
use a version from here if directed to by AVIEX or EPIX personnel. However, normally the versions found in
ftp://ftp.epixinc.com/software/are the preferred versions.

XCAP

The XCAP package contains both the kernel mode driver needed by the EPIX software and a user GUI called
xcapwhich can be used to control the imaging board. As of October 2006, you may download this from the directory
ftp://ftp.epixinc.com/software/xcapv22/. For Linux, you will want to download the filexcaplnxi386.bin, while for
Windows you will want to download the filexcapwi.exe.

For the EPIX PIXCI E4 card used by the AVIEX PCCD-170170, you install XCAP using the procedure described
in the User’s Manual for the card, which may be found athttp://www.epixinc.com/manuals/pixcie14el/index.htm.
The actual installation is described in chapter 3 of that manual. The PIXCI E4 is bundled with a license for the
XCAP-Lite version of the program. XCAP-Lite is what we have used for the development of the MX drivers. On
Linux, by default, the software will end up in the directory/usr/local/xcap, while on Windows, it will end up in the
directoryC:\XCAP.

We do not recommend that users use the XCAP-Lite version of the program for normal operation, since it has
limited functionality. In addition, XCAP-Lite will not start if you have configured the kernel mode image buffer for
more than approximately 64 megabytes of memory. At present, we only use XCAP-Lite to generate configuration
files that are to be read by XCLIB.

10 CHAPTER 1. INTRODUCTION

XCLIB

The XCLIB library is used by third-party application packages like MX to control EPIX PIXCI imaging boards.
You may download the current version of the library from the EPIX FTP site’s directoryftp://ftp.epixinc.com/software/xclibv22/.
The license for the development package isnot included with the purchase price of the EPIX PIXCI E4. Instead, it is
an additional charge of $495 as of late 2006.

For Linux, you should download thexcliblnx version for Fedora Core 4, which works just fine on Fedora Core 5.
For Windows XP, you should download the filexclibwnt.exe. Please be careful to download files whose names begin
with xclib with ab and not files whose names begin withxclip with ap. Thexclip versions include image processing
functionality not used by MX and the license cost for those versions is higher. By default, XCLIB will be installed
to /usr/local/xclib on Linux and toC:\XCLIB on Windows. The procedure for installing XCLIB is not described
in any document on the EPIX web site. It is only described in the manual distributed with licensed versions of the
XCLIB development kit.

Please note that in the XCLIB download directory, there are versions of the library for Mandrake 9.1 using the
older Linux 2.4 kernel, for Windows 95/98/ME and for the 32-bit DOS Watcom compiler. Currently, we have no
plans to support these older operating system platforms.

Cygwin (for Windows platforms)

Although MX can be compiled on Windows with Microsoft Visual C++, Borland C++, MinGW, Cygwin, or DJGPP,
the build process isalwaysmanaged using the Cygwin version ofMake. Microsoft’sNmakecannot be used since the
MX makefiles make use of features not available inNmake.

Cygwin can be found at the web sitehttp://www.cygwin.com/. In brief, the procedure consists of downloading and
running Cygwin’ssetup.exeinstallation program to download and install the Cygwin packages you need. The bare
minimum needed are the base packages and themakepackage plus their dependencies. When building MX himself,
the author of MX generally installs a variety of other packages including the Cygwin SSH server to create a more
congenial development environment, but this is not absolutely necessary.

1.3.2 Downloading MX

The MX home page can be found athttp://mx.iit.edu/. Official releases can be found on the download page
http://mx.iit.edu/source.html. In the future, when area detector support has been made part of an official MX 1.4.0
release, this will be the best place to get the source code. However, until this happens, you will need to download a
development snapshot or else checkout the code from the MX Subversion repository.

Development snapshots can be downloaded from the directoryhttp://mx.iit.edu/src/devel/. In general, you should
use the development snapshots rather than code checked out from Subversion, since the development snapshots can
generally be counted on to compile and run on the most commonly used MX platforms such as Linux, Windows,
MacOS X, and Solaris.

If you really do need the newest possible code, then you must checkout the code from the MX Subversion reposi-
tory. The various repositories can be browsed with a web browser athttp://mx.iit.edu/svn.html. The core MX package
can be checked out with a command like this:

svn checkout http://svn.csrri.iit.edu/mx/trunk mx

This will create a new MX source tree in the subdirectorymx which is ready to be configured and built.
Please bear in mind that the Subversion repository is in constant change with commits sometimes taking place

several times a day. The most recent commit is not guaranteed to work correctly or even compile correctly at any
given moment, so, in general, you are better off using a development snapshot as described above.

1.3. INSTALLATION FROM SOURCE 11

1.3.3 Building MX for the Detector Computer

Building MX is a multistep process.

1. The first step is to edit the top level makefile. Relative to the directory you unpacked MX into, the name of this
file is mx/Makefile.

In the makefile, the first thing that you will want to do is to change the value of the variable MXARCH to
match the platform that you are compiling the code. For AVIEX area detectors, the only suitable choices are
linux andwin32 .

Then, you will need to change the value of the MXINSTALL DIR variable. In general, this can be anywhere
you want. Typically, the author generally chooses a name containing the version number of MX such as
/opt/mx-1.4.0on Linux orc:/opt/mx-1.4.0on Windows. On Linux, this directory will generally be symlinked
to /opt/mx.

Warning: For Windows, you must useforward slashes(/) in the file name, rather thanbackslashes(\). Using
backslashes here will cause the build process to fail.

A more general warning is that you must not use filenames that include spaces anywhere in the MX makefiles,
since that will also cause the build to fail. On Windows, this means that you must usec:/progra∼1 rather than
c:/Program Files andc:/docume∼1 rather thanc:/Documents and Settings. This is all a consequence of the
way that Gnu make processes filenames.

2. The next step is to edit the filemx/libMx/mxconfig.h. This file is used to enable or disable the compilation
drivers that make use of software libraries external to MX that are not guaranteed to be available. For the
AVIEX PCCD-170170 detector, you will need to define the HAVEEPIX XCLIB flag as follows:

#define HAVE_EPIX_XCLIB 1

If you wish to include the Video4Linux 2 driver for test purposes as well, then you will also need to make the
definition

#define HAVE_VIDEO_4_LINUX_2 1

All of the other defines should be set to 0.

3. The last file to edit ismx/libMx/Makehead.linux or mx/libMx/Makehead.win32, depending on your plat-
form. What you must do here is make sure that the correct version of the macros INCLUDES, LIBDIRS, and
LIBRARIES is uncommented. On Linux, the correct version to uncomment is

INCLUDES = $(MX_INCLUDES)
LIB_DIRS = -L$(MX_LIB_DIR) $(EPIX_XCLIB_LIB_DIRS)
LIBRARIES = $(EPIX_XCLIB_LIBRARIES) -lpthread -lrt -lm

while on Windows, the correct version is

INCLUDES = $(MX_INCLUDES) $(EPIX_XCLIB_INCLUDES)
LIBRARIES = $(WIN32_LIBS) $(EPIX_XCLIB_LIBS)

12 CHAPTER 1. INTRODUCTION

If the EPIX, Inc. XCLIB library was not installed in the default location, you will also need to find the definition
of the macro EPIXXCLIB DIR and change it to match the location that XCLIB was installed to. Please note
that on Windows you must use escaped backslashes(\\) in the filenames mentioned here.

4. Now go to the top level source code directorymx and type the commandmake depend. This step constructs files
namedMakefile.dependin each of themx/libMx , mx/motor, mx/server, mx/update, andmx/util directories.
These are used to determine which files must be recompiled when a given MX file is modified. This step is not
strictly necessary, but it does no harm to do it.

5. At this point, we are ready to compile and link MX. To do this, type the commandmakein the top level directory
mx. If you are building a snapshot or a released version of MX, this should compile without any errors. If you
get any errors, this should be reported to the author.

If you obtained the source code tree you are trying to compile from thetrunk branch of the MX Subversion
repository, not all revisions found there are guaranteed to compile or work correctly. Normally, you should
only try the Subversion repository directly if you require some feature that is not already available in a released
MX version or a snapshot version from thehttp://mx.iit.edu/src/devel/directory.

6. The final step is to typemake installin the top level directorymx. You must make sure to do this using an
account that has permission to write to the installation directory. If this is a system directory, you will need
to su to root on Linux, or switch to an account with adminstrative privileges on Windows. If you are merely
installing a private copy into your own directory, then changing accounts will not be necessary.

1.3.4 Building MX for Client Computers

Building MX on a client computer uses essentially the same process as building it for the detector computer. In fact,
if you wish, you may copy the version you built for the detector computer to your client computer. On Linux, this
should just work, since the EPIX XCLIB library is statically linked tolibMx.so as long as the version ofglibc on
the client computer is the same version or newer than the version on the computer you originally compiled MX on.
However, on Windows, if you want to do this, you will need to copy the EPIX XCLIB DLL to the client computer.

If you wish to compile MX separately for the client computer, only a few changes need to be made. First, you
must make the definition

#define HAVE_EPIX_XCLIB 0

in the client’s copy ofmx/libMx/mxconfig.h. You must also make sure that the INCLUDE, LIBDIRS, and LI-
BRARIES macros in your platform specific makefile do not include any references to the EPIX libraries. In addition,
if you are compiling on a different platform, you will need to change MXARCH in the top level Makefile to match
your platform. The client side version of MX should compile on any of the platforms mentioned in Section 1.1.1.

1.4 Configuring MX

If you are at a site that is using MX to control the entire beamline, setting up the configuration files can be a fair
amount of work and will not be covered in this document. However, if you are only using MX to control your area
detector, then you should be able to use the example configuration files shown in this document essentially as is.

1.4. CONFIGURING MX 13

1.4.1 Environment Variables

For MX to operate, you must set up two or three environment variables correctly. These are:

MXDIR - This environment variable should contain the name of the top level installation directory for MX. Typi-
cally, for Linux/Unix systems, this will be/opt/mx.

For Windows systems, this variable typically will bec:/opt/mx. Please note that for this case on Windows
systems, you must use a forward slash (/).

PATH - You must also add the application binary directory to the PATH environment variable. For Linux/Unix
systems, this will generally be$MXDIR/bin .

On Windows, ifMXDIR is c:/opt/mx, then the correct string to add to the path will bec:\opt\mx\bin. Note
that for thePATH variable, you use backslashes (\)

For Linux/Unix systems, there is generally one more environment variable to set.

LD LIBRARY PATH - For most Linux and Unix platforms, this environment variable tells the operating system
where to find shared libraries. Generally, it should be set to the value$MXDIR/lib . However, a couple of
supported MX platforms use an environment variable with a different name for this purpose. On MacOS X,
the correct environment variable to use isDYLD LIBRARY PATH , while on HP-UX the correct environment
variable isSHLIB PATH .

In the MX source code tree, the filemx/scripts/mxsetup.shis a full featured example of what needs to be done on
Linux/Unix systems with a shell using the Bourne shell syntax. On most systems, all you will need to do is to define
the environment variable MXDIR before sourcingmxsetup.sh. Usually MXDIR should be defined to have the same
value as the MXINSTALL DIR from the top level MX makefile. If youmake installto one location and then copy
the installed binary tree to a different location, you will need to change the MXDIR environment variable to point to
the top level directory in the new location.

Themx/scripts directory also contain briefer examples of what to do for the Linux/Unix C shell (mxsetup.csh)
and for Windows (mxsetup.bat).

1.4.2 Configuring MX for Client Computers

MX client computers generally need to setup one configuration file. This file will have the same contents regardless
of whether the server manages a real area detector or a software emulated area detector. Traditionally, this file has the
name$MXDIR/etc/motor.dat , although you can actually use any filename you want as long as you pass the correct
filename tomx setupdatabase(). A file like the following should work for most installations:

adserver server network tcp_server "" "" 0x20000000 192.168.137.3 9727
ad device area_detector network_area_detector "" "" 8 adserver ad

The first field is theserverflagsfield. Currently if you are using the software emulated area detector, you should
set this line to 0x20000000, which tells the client to use blocking I/O. This is due to a limitation of the functionality
of the software emulated area detector and will not be necessary with a real area detector. For a real area detector,
you should set this field to 0x0 so that the client can time out if the server fails.

The 192.168.137.3 field is the IP address of the server. You can also specify a domain name likemxserver.example.com
here, but I generally recommend using numerical IP addresses here, since this means that you can skip doing a Do-
main Name Service lookup when your client starts. The last argument 9727 is the port number of the MX server on

14 CHAPTER 1. INTRODUCTION

the remote computer. Although most installations will use the standard value of 9727, the port number is selectable
so that you can run more than one MX server on a given computer.

In the second line, the stringad at the start of the line is the name of the MX record that controls your area
detector. This name must be passed tomx get record()after you invokemx setupdatabase(). At the end of the line,
the number 8 is the maximum number of ROIs configured for this area detector. This value should match the value
set in the server’s configuration file.adservertells MX that this device is controlled by the MX server defined on the
first line, while the trailingadentry is the name of the area detector record on the remote MX server.

1.4.3 Configuring MX for Area Detector Servers

There are four files you may need to configure for an MX server.

1. $MXDIR/etc/mxserver.acl

This file contains a list of IP addresses or domain names that are permitted to connect to the MX server. There
should be one address per line. Here is an example.

192.168.137.3
192.168.137.6
192.168.238.*
*.example.com
beamline?.example.net

Note that the wildcard character ”*” can match any string of characters, while the wildcard character ”?”
only matches a single character. Thus, for this example, any computer on the 192.168.238 subnet or at ex-
ample.com can connect to the server. In addition, any computer with a name like beamline1.example.net,
beamline2.example.net, and so forth, can also connect.

Please note that the MX server checks the address of the remote client before reading even a single byte from
the client. If the client’s host IP is not on the access control list, the connection is dropped without sending any
response back.

2. $MXDIR/etc/mxserver.dat

This file configures the devices used by the MX server and is described in detail below.

3. $MXDIR/etc/mxserver.opt

If it exists, this file supplies additional command line arguments to the MX server. The most commonly used
argument here is-t, which tells the server to print out the name of each record, just before it starts to configure
the hardware for that record. This option is useful for cases where the MX server hangs during startup if you
want to see which record is causing it to hang. For a system with only a few records, such as an area detector,
it is probably simplest to always specify-t here.

4. $MXDIR/etc/mxuser.dat

If it exists, this file lists the name of the user account that the MX server should be run under. At present, this
feature only works on Linux/Unix systems and only functions if the server startup script$MXDIR/sbin/mx is
started as root. In general, we recommend that the MX server be run as a non-root user such asmx to limit
the scope of damage if someone were to break into your computer via the MX server. So far this has never
happened, but it is best to be prepared.

1.4. CONFIGURING MX 15

1.4.4 Configuring mxserver.dat

The contents of the$MXDIR/etc/mxserver.dat depend on which kind of area detector you are using.

AVIEX PCCD-170170

For the AVIEX PCCD-170170 CCD detector, you should use anmxserver.datfile that looks like this:

xclib interface generic epix_xclib "" "" /opt/mx/etc/pccd_170170.fmt
port interface camera_link epix_camera_link "" "" 9600 0.5 1
epix device video_input epix_xclib_video_input "" "" 4096 4096 GREY16 -1 1 port 0x0
ad device area_detector pccd_170170 "" "" 8 "" "" "" "" epix port 0x1
rs232 interface rs232 camera_link_rs232 "" "" 9600 8 N 1 N 0x0 0x0 -1 0x0 port

In general, you should not modify the contents of the first three lines of this file, unless recommended to by AVIEX
personnel.

However, you may have reason to modify the fourth line which defines the recordad which represents the area
detector as a whole. The fields in this record have the following meanings:

Name Value Datatype Description
name ad 1-d string Name of the record.
mx superclass device recordtype Driver superclass.
mx class area detector recordtype Driver class.
mx type pccd170170 recordtype Driver type.
label “” 1-d string Intended for use by GUIs.
acl description “” 1-d string ACLs not yet implemented.
maximumnum rois 8 long Maximum number of ROIs
maskfilename “” 1-d string Name of the file containing the mask frame.
biasfilename “” 1-d string Name of the file containing the bias frame.
dark currentfilename “” 1-d string Name of the file containing the dark current frame.
flood field filename “” 1-d string Name of the file containing the flood field frame.
video input record epix record The name of the video input record.
cameralink record port record The name of the Camera Link record.
initial trigger mode 0x1 hex (unsigned long) Only internal trigger (0x1) is supported at this time.

For arbitrary drivers, you can get a fairly terse list of the field names and their datatypes by running the command
$MXDIR/bin/mxdriverinfo -f pccd170170, if you replacepccd170170with the name of the driver you are really
interested in. In general, we will not describe the detailed meanings of records that you are not expected to change.

The first modifiable field in thead record is themaximumnumrois field which, as it says, sets the maximum
number of regions of interest available to the user. In the example above, it is set to 8. In general, both the client and
the server should be configured to use the same maximum number of regions of interest. Each region of interest uses
enough memory to hold a copy of the region of interest data. If the region of interest covers the entire frame, then
it will use as much memory as an entire frame. However, the memory for a given region of interest is not allocated
until the first time it is used.

Next come themaskfilename, bias filename, dark current filename, andflood field filenamefields which specify
the names of the initial files to be used for image correction. If they are not set to empty strings, the contents of the
specified file will be loaded into the MX server at server startup time. If a given correction filename is set to “”, then
that correction will not be performed.

16 CHAPTER 1. INTRODUCTION

Thevideo input record andcameralink record fields should not be changed. A later version of this driver will
provide for external triggers, but for now you should set theinitial trigger modefield to 0x1 meaning internal trigger.

Software Emulated Area Detector with Software Generated Images

In order to test using an area detector emulated entirely in software, you should use the followingmxserver.datfile:

video device video_input soft_vinput "" "" 4096 4096 GREY16 -1 1
ad device area_detector soft_area_detector "" "" 8 "" "" "" "" video 0x1

In the record description for thesoft area detectorrecord, the field containing the number 8 is themaximumnumrois
field and the four fields following it are the various correction files, just like for thepccd170170driver discussed
above. The last two fields are thevideo input recordandinitial trigger modefields as described above.

The definition of thesoft vinput record should probably be left alone, unless you want to change the image
framesize from 4096 by 4096 to something else. The last field in this record is theimagetypefield. In the future,
changing this field will allow you to change the type of image generated. At present, the only supported value is 1,
which causes the generated images to repeat with in a cycle of four frames, with the maximum intensity in a different
corner for each of the four frames.

Software Emulated Area Detector with Video4Linux 2 Generated Images

This mode of operation replaces the generation of image frames in software with frames read in from a video camera
or a TV capture card. For this case, you should use anmxserver.dat that looks like this:

video device video_input v4l2_input "" "" 640 480 GREY8 -1 /dev/video0 1
ad device area_detector soft_area_detector "" "" 8 "" "" "" "" video 0x1

Although this driver makes many kinds of software testing easier, it is not able to generate images as large as a typical
area detector and most consumer cameras do not support square images. In addition, Video4Linux 2 only supports
8-bit greyscale. Thus, it is a less faithful emulation of the real behavior of an area detector.

Software Emulated Area Detector with Images from a Directory of Frames

In the near future, we will add a new video input driver calledfile vinput. This driver will generate the image frames
sent to clients by reading them from a directory of already existing frames, such as from another area detector. The
only thing holding this up is that we have not yet written the I/O routines for reading and writing the necessary file
formats. In the future, this driver will give the most faithful emulation of a real area detector.

1.4.5 Running the MX Server

Linux

For Linux and Unix systems, MX comes with a System V style startup which is installed at the location$MXDIR/sbin/mx .
To manually start, stop, or restart the MX server, you can use the System V style syntax, assuming MXDIR=/opt/mx:

/opt/mx/sbin/mx start
/opt/mx/sbin/mx stop
/opt/mx/sbin/mx restart

1.4. CONFIGURING MX 17

To get automatic startup of the MX server when the machine boots, all you need to do is to arrange that the
$MXDIR/sbin/mx script be invoked at system startup time. On a Linux computer that uses the System V style init,
you must go into therc?.d directories for each run level that you want to run the MX server in and make a symbolic
link to the$MXDIR/sbin/mx script.

For example, on a Fedora Core system with MXDIR=/opt/mx, you would go into the directory/etc/rc.d/rc2.d
and make a symbolic link with the following command

ln -s /opt/mx/sbin/mx S99mx

This tells the System V init system that you want to start the MX server at the end of system startup for run level 2.
You would add similar symbolic links to the other run levels that you want it to start in.

For system shutdown, you make similar symbolic links in the run level directories for run levels 0 and 6. For
example,

ln -s /opt/mx/sbin/mx K00mx

tells init to shut down the MX server at the start of system shutdown or reboot.

Windows

On Windows, you can start the MX server by running the batch file.$MXDIR/sbin/mx.bat . This file is merely a
wrapper around the$MXDIR/sbin/mxserver.exebinary to set up its command line arguments correctly. The simplest
way to get the server to start automatically when the Windows machine boots is to configure the Windows machine
to automatically log into the account you will be running the MX server from and then configure themx.bat script as
a Startup item. It may be possible to run the MX server as a service using thesrvany.exeprogram from the Windows
Resource Kit, but we have not tested this.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Using the MX Area Detector API

2.1 Building an MX Client

Setting up the makefile to build an MX client is quite straightforward. Here is an example for Linux or Unix:

#
Use defines like these if you are linking to an installed version of MX.
#
MXDIR = /opt/mx-1.4.0

MX_LIB_DIR = $(MXDIR)/lib
MX_INCLUDE_DIR = $(MXDIR)/include

#
Use defines like these if you are linking to a copy of MX in the original
build directory.
#

MX_LIB_DIR = /home/lavender/mxdev/mx-1.4.0/mx/libMx
MX_INCLUDE_DIR = $(MX_LIB_DIR)

CFLAGS = -g -DOS_LINUX -DDEBUG -Wall -Werror -I$(MX_INCLUDE_DIR)

mx_client: mx_client.o
gcc -g -o mx_client mx_client.o -L$(MX_LIB_DIR) -lMx

mx_client.o: mx_client.c
gcc $(CFLAGS) -c mx_client.c

clean:
-rm *.o mx_client

19

20 CHAPTER 2. USING THE MX AREA DETECTOR API

Here is the same example for Windows using Visual C++ 2005 Express:

#
Do not forget that filenames and pathnames supplied to Gnu make
must _not_ include spaces. That is the reason for the use of
progra˜1 below rather than "Program Files".
#
MSDEV_DIR = c:\\progra˜1\\micros˜4

WIN32_LIBS = $(MSDEV_DIR)\\lib\\wsock32.lib $(MSDEV_DIR)\\lib\\winmm.lib \
$(MSDEV_DIR)\\lib\\advapi32.lib

#
Use defines like these if you are linking to an installed version of MX.
#
MXDIR = c:\\opt\\mx-1.4.0

MX_LIB_DIR = $(MXDIR)\\lib
MX_INCLUDE_DIR = $MXDIR\\include

#
Use defines like these if you are linking to a copy of MX in the original
build directory.
#

MX_LIB_DIR = c:\\docume˜1\\lavender\\mxdev\\mx-1.4.0\\mx\\libMx
MX_INCLUDE_DIR = $(MX_LIB_DIR)

CFLAGS = -DOS_WIN32 -DDEBUG -nologo -Zi -WX -I$(MX_INCLUDE_DIR)

mx_client: mx_client.obj
link /debug /nologo /out:mxserver.exe mx_client.obj \
/nodefaultlib:libc $(MX_LIB_DIR)\\libMx.lib $(WIN32_LIBS)

mx_client.obj: mx_client.c
cl $(CFLAGS) -c mx_client.c

clean:
-rm *.o mx_client

2.2. INITIALIZING MX 21

2.2 Initializing MX

2.2.1 mxsetup database()

Most MX client programs should start by calling an MX utility function calledmx setupdatabase(). Calling it looks
like this:

...

MX_RECORD *mx_database;
char mx_database_filename[] = "/opt/mx/etc/motor.dat";
mx_status_type mx_status;

mx_status = mx_setup_database(&mx_database, mx_database_filename);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

...

mx setupdatabase()encapsulates all of the operations required to use a database file to initialize a running MX
database in your client or server process. Oncemx setupdatabase()has returned successfully, you can be sure that
you have successfully connected to the remote server(s) and your runtime database is ready to be used.

This example demonstrates two MX data types that you will encounter all of the time in MX programming. The
first data type is theMX RECORD structure.MX RECORDs are the most important object type in MX and for the
most part have a 1 to 1 relationship to the actual hardware being controlled by the experiment. Thus, an area detector
will have anMX RECORD that represents it, and the imaging board that the area detector communicates with will
have anMX RECORD that represents it, and so forth.

TheMX RECORD structure is designed to be use as a mostly opaque type. The only member of it that you are
likely to use is thenamevalue. For example, you could print out the name of themx databaserecord in the example
above with code like this:

...

printf("The name of the MX database record is ’%s’.\n", mx_database->name);

...

The output of this line should look like this:

The name of the MX database record is ’mx_database’.

The MX in-memory database is maintained as a circular linked list ofMX RECORD structures. TheMX RECORD
returned bymx setupdatabase()is referred to as the “list head” record and is always named “mxdatabase”. The list
head record maintains information about the MX database as a whole.

TheMX RECORD data type is defined near the top of the header file$MXDIR/include/mx record.h. Do not
be alarmed by the complexity of the data structure you find there. You should not have to know about any of it unless
you plan to write your own new MX drivers.

The other important data type is themx status type. Most, but not all, MX functions have anmx status type
structure as the value returned by the function. Themx status type structure is a fairly simple structure that has only
three element. It is defined as follows:

22 CHAPTER 2. USING THE MX AREA DETECTOR API

typedef struct {
long code; /* The error code. */
const char *location; /* Function name where the error occurred. */
char *message; /* The specific error message. */

} mx_status_type;

Most MX functions will return to their caller either with a line like this

return MX_SUCCESSFUL_RESULT;

if the function was successful, or they will do something like this

...
static const char fname[] = "mx_test_function()";
...
return mx_error(MXE_PERMISSION_DENIED, fname,

"You do not have sufficient privilege to perform this test.");
...

In the latter case, by default the MX program will send tostderra message that looks like this

MXE_PERMISSION_DENIED in mx_test_function():
-> You do not have sufficient privilege to perform this test.

It is possible to redirect or suppress such messages using the functions described below in Section 2.2.4.
Note that, by convention, most MX functions will start with a definition of the form

static const char fname[] = "mx_function_name()";

The C99 standard has now added an equivalent feature to this. However, most of our supported platforms do not
yet support the C99 version of the C standard, so we must continue to add our own function name strings for the
forseeable future.

2.2.2 mxsetup databasefrom array()

mx setupdatabasefrom array() is an alternate tomx setupdatabase()that reads in the records from an array of
character strings instead of a disk file. This function may be used as follows:

....
#define NUM_RECORDS 2
....
MX_RECORD *mx_database;
char db_array[NUM_RECORDS][80];
char server_name[] = "192.168.137.3";
long server_port = 9727;
mx_status_type mx_status;

snprintf(db_array[0], sizeof(db_array[0]),
"adserver server network tcp_server \"\" \"\" 0x20000000 %s %ld",

server_name, server_port);

2.2. INITIALIZING MX 23

strlcpy(db_array[1],
"ad device area_detector network_area_detector \"\" \"\" 8 adserver ad",

sizeof(db_array[1]));

mx_status = mx_setup_database_from_array(&mx_database,
NUM_RECORDS, db_array);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

....

2.2.3 mxget record()

In order to use a device controlled by MX, you must get a pointer to theMX RECORD object describing it. This
operation is performed by the functionmx get record(). Here is an example of usingmx get record():

...
MX_RECORD *mx_database;
MX_RECORD *ad_record;
char ad_record_name[] = "ad";

ad_record = mx_get_record(mx_database, ad_record_name);

if (ad_record == NULL) {
return mx_error(MXE_NOT_FOUND, fname,
"The record ’%s’ was not found in the running MX database.",

ad_record_name);
}
...

mx get record() is a fairly simple function. You hand it a pointer to the MX database and the name of the record
you want to find and it either returns a pointer to the new record or a NULL pointer if the record was not found. Note
that the record name you specifymust match the name in your client side database file. Otherwise, the record will
not be found.

2.2.4 Redirecting Output

MX has four different classes of output that it sends to the user. These includedebug, info, warning, anderror
messages. By default, all of these messages are sent to thestderr stream. MX provides four functions that can
potentially redirect each of these types of output to a different location. These are:mx setdebugoutput function(),
mx set info output function(), mx setwarning output function(), andmx seterror output function().

Each one of these functions takes a single argument which is a pointer to a function that takes achar * as its single
argument and which returns void. For example, if we define the following function

static void my_info_output(char *string)
{

24 CHAPTER 2. USING THE MX AREA DETECTOR API

printf("MY_INFO_OUTPUT: %s\n", string);
}

and then make the call

mx_set_info_output_function(my_info_output_function);

then subsequent calls like this

mx_info("This is a test.");

will generate output like this

MY_INFO_OUTPUT: This is a test.

2.2.5 Example for mxsetup database()

Here we show a complete example that loads an MX database, gets a pointer to the area detector record, and finishes
by checking that it is indeed annetworkarea detectorrecord.

/*
* Name: example1a.c
*
* Purpose: This program demonstrates how to initialize MX
* using a database file.
*
* Author: William Lavender
*
*--
*
* Copyright 2006 Illinois Institute of Technology
*
* See the file "LICENSE" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_driver.h"

int
main(int argc, char *argv[])
{

MX_RECORD *mx_database, *area_detector_record;
char mx_database_name[] = "./mx_client.dat";

2.2. INITIALIZING MX 25

char area_detector_name[] = "ad";
mx_status_type mx_status;

mx_status = mx_setup_database(&mx_database, mx_database_name);

if (mx_status.code != MXE_SUCCESS) {
fprintf(stderr, "Did not successfully open MX database ’%s’.\n",

mx_database_name);
exit(1);

}

area_detector_record = mx_get_record(mx_database, area_detector_name);

if (area_detector_record == NULL) {
fprintf(stderr, "Did not find record ’%s’ in MX database ’%s’.\n",

area_detector_name, mx_database_name);
exit(1);

}

if (area_detector_record->mx_type != MXT_AD_NETWORK) {
fprintf(stderr,

"MX record ’%s’ is not a network area detector record.\n",
area_detector_record->name);

fprintf(stderr, "Instead, it is of type ’%s’.\n",
mx_get_driver_name(area_detector_record));

exit(1);
}

printf("Successfully found network area detector ’%s’.\n",
area_detector_record->name);

exit(0);
}

This example introduces a few new features. First are the MX include file definitions

#include "mx_util.h"
#include "mx_record.h"
#include "mx_driver.h"

The first include file$MXDIR/include/mx util.h contains a large number of utility definitions and functions. In par-
ticular, it is the header file that definesmx status type. The second header file$MXDIR/include/mx record.h de-
fines theMX RECORD structure as well as a variety of other structures and generic functions to manipulate records.
All of the MX functions in the above example are defined inmx record.h. The last include file$MXDIR/include/mx driver.h
contains a list of the numerical driver type codes and is included in this program in order to get the definition of the
MXT AD NETWORK macro.

Two other additions of note are the the use of themx type field of theMX RECORD structure in the statement

26 CHAPTER 2. USING THE MX AREA DETECTOR API

if (area_detector_record->mx_type != MXT_AD_NETWORK) {

and the use of the functionmx get driver name()which returns the character string name of the driver for this record.
It will always be the same text which appears in the fourth field of the MX record definition in the MX database file.

2.2.6 Example for mxsetup databasefrom array()

Here is the same example as in the previous section rewritten to usemx setupdatabasefrom array():

/*
* Name: example1b.c
*
* Purpose: This program demonstrates how to initialize MX
* using a database stored in an array.
*
* Author: William Lavender
*
*--
*
* Copyright 2006 Illinois Institute of Technology
*
* See the file "LICENSE" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_driver.h"

#define NUM_RECORDS 2
#define LINE_LENGTH 80

int
main(int argc, char *argv[])
{

MX_RECORD *mx_database, *area_detector_record;
char server_host[] = "192.168.137.3";
long server_port = 9827;
char area_detector_name[] = "ad";
char **db_array;
mx_status_type mx_status;

db_array = malloc(2 * sizeof(char *));

2.2. INITIALIZING MX 27

if (db_array == NULL) {
fprintf(stderr,

"Could not allocate row pointer for db_array.\n");
exit(1);

}

db_array[0] = malloc(LINE_LENGTH * sizeof(char));

if (db_array[0] == NULL) {
fprintf(stderr,

"Could not allocate row 0 of db_array.\n");
exit(1);

}

db_array[1] = malloc(LINE_LENGTH * sizeof(char));

if (db_array[1] == NULL) {
fprintf(stderr,

"Could not allocate row 1 of db_array.\n");
exit(1);

}

snprintf(db_array[0], LINE_LENGTH,
"adserver server network tcp_server \"\" \"\" 0x0 %s %ld",

server_host, server_port);

snprintf(db_array[1], LINE_LENGTH,
"%s device area_detector network_area_detector \"\" \"\" 8 adserver ad",

area_detector_name);

mx_status = mx_setup_database_from_array(&mx_database,
NUM_RECORDS, db_array);

if (mx_status.code != MXE_SUCCESS) {
fprintf(stderr, "Did not successfully open MX database array.\n");
exit(1);

}

area_detector_record = mx_get_record(mx_database, area_detector_name);

if (area_detector_record == NULL) {
fprintf(stderr, "Did not find record ’%s’ in the MX database.\n",

area_detector_name);
exit(1);

}

28 CHAPTER 2. USING THE MX AREA DETECTOR API

if (area_detector_record->mx_type != MXT_AD_NETWORK) {
fprintf(stderr,

"MX record ’%s’ is not a network area detector record.\n",
area_detector_record->name);

fprintf(stderr, "Instead, it is of type ’%s’.\n",
mx_get_driver_name(area_detector_record));

exit(1);
}

printf("Successfully found network area detector ’%s’.\n",
area_detector_record->name);

exit(0);
}

2.3 Reading and Writing Area Detector Settings

MX has a variety of functions for reading and writing internal area detector settings. The following list summarizes
the functions available of this type.

mx area detector get maximum framesize()
This function reports the resolution that the detector has if it is in unbinned mode.

mx area detector get framesize()
This function reports the current resolution of the detector.

mx area detector set framesize()
This function sets the the resolution of the detector to the nearest size that is actually supported by the detector.

mx area detector get image format()
Returns a constant that describes the image format.

mx area detector get bytes per pixel()
Returns the number of bytes that correspond to a pixel. There exist image formats for which this ratio is not an
integer, somx area detectorget bytesper pixel() reports back the bytes per pixel as a Cdoublerather than as
an integer.

mx area detector get bytes per frame()
Returns the number of bytes in an image frame using the current image format and the current framesize.

mx area detector get trigger mode()
Reports whether the area detector is using internal or external triggering.

mx area detector set trigger mode()
Specifies whether the area detector should use internal or external triggering.

2.4. DETECTOR PROPERTIES 29

2.4 Detector Properties

Each kind of detector has a variety of internal parameters that are specific to that model. Those internal parameters,
which MX callspropertiesare read and written using the following set of property functions. Each property is referred
to by an ASCII name. The following functions are provided for reading and writing the properties.

mx area detector get property double()
mx area detector set property double()

These two functions read and write property values as doubles.

mx area detector get property long()
mx area detector set property long()

These two functions read and write property values as longs.

mx area detector get property string()
mx area detector set property string()

These two functions read and write property values as strings.

2.5 Sequences

For an area detector, asequenceis a series of one or more image frames that are taken after a single trigger is sent to
the area detector. In the most general case, each frame can have a different exposure time and each pair of frames can
be separated by a different separation time.

In MX, the instructions for taking a sequence are encoded in anMX SEQUENCE PARAMETERS structure.
This structure is found in the MX header file$MXDIR/include/mx image.hand is defined like this:

typedef struct {
long sequence_type;
long num_parameters;
double parameter_array[MXU_MAX_SEQUENCE_PARAMETERS];

} MX_SEQUENCE_PARAMETERS;

Thesequencetypestructure member specifies the type of sequence to be executed. Theparameterarray member
contains all of the parameters used by the particular type of sequence, whilenumparameterstells you how many
parameters are in the array. Bear in mind that not all types of sequences supported by MX are available for all types
of area detectors.

The mx area detectorset sequenceparameters()function can be used to specify the parameters for the next
sequence to be run andmx area detectorget sequenceparameters()can be used to report the current sequence pa-
rameter settings. Here is an example of how to usemx area detectorset sequenceparameters()for One-shot mode,
which is used to take one frame and then stop:

...
MX_RECORD *ad_record;
MX_SEQUENCE_PARAMETERS seq_params;
...
seq_params.sequence_type = MXT_SQ_ONE_SHOT;
seq_params.num_parameters = 1;
seq_params.parameter_array[0] = 0.5; /* Exposure time of 0.5 seconds. */

30 CHAPTER 2. USING THE MX AREA DETECTOR API

mx_status = mx_area_detector_set_sequence_parameters(ad_record,
&seq_params);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

....

However, each sequence type has a wrapper function that can be used as a simplified interface to that type of
sequence. Thus, for the one-shot case above, it would be more common to use this method instead:

...
MX_RECORD *ad_record;
...
/* Request a single frame with a 0.5 second exposure time. */

mx_status = mx_area_detector_set_one_shot_mode(ad_record, 0.5);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

....

A variety of convenience functions have been defined for setting up particular kinds of sequences:

mx area detector set one shot mode()
A one-shot sequence takes a single frame for the requested exposure time and then stops.

mx area detector set continuous mode()
A continuous sequence repeatedly takes frames for the requested exposure time, without any explicit gaps
between the frames until commanded to stop. Each new frame overwrites the previous frame. This mode is
useful for live display of images from the detector.

mx area detector set multiframe mode()
This type of sequence takes a specified number of frames with each frame going into a separate frame buffer.
All of the frames have the same exposure times and the gaps between the frames are all the same as well.

mx area detector set circular multiframe mode()
This mode is almost identical to the multiframe mode. However, after the detector takes the last requested
frame, it loops back to the start of the frame sequence and starts overwriting old frames.

mx area detector set strobe mode()
This type of sequence takes a specified number of frames with each frame going into a separate frame buffer.
The start of exposure for each frame is triggered by an external trigger. This mode can be thought of as edge-
triggered. Each frame has the same exposure time.

mx area detector set bulb mode()
This type of sequence takes a specified number of frames with each frame going into a separate frame buffer.
For each frame, the external trigger signal controls the start and the end of the exposure time for each frame.
The exposure starts when the external trigger goes high and ends when the external trigger goes low. This mode
can be thought of as level-triggered.

2.6. ACTIONS 31

mx area detector set geometrical mode()
This type of sequence is specific to the PCCD-170170 area detector. In this mode, the first frame and first gap
are taken for the specified exposure and gap times. For each subsequent frame, the exposure time and gap times
are multiplied by another factor of the exposure and gap multipliers.

Please note that not all types of sequences are available for all types of detectors.

2.6 Actions

The functions in this section command the area detector to start a data acquisition sequence and then report on the
status of this sequence.

mx area detector arm()
Tells the area detector to perform all the preliminary setup required to be ready to start an image sequence. If
external trigger is enabled, the first trigger after the arm finishes will start the imaging sequence.

mx area detector trigger()
Sends a software trigger to the area detector that tells it to start the imaging sequence.

mx area detector start()
This is a utility function that invokesmx area detectorarm() followed bymx area detectortrigger().

mx area detector stop()
This tells the area detector to stop an in-progress imaging sequence after the current frame completes.

mx area detector abort()
This tells the area detector to stop an in-progress imaging sequence as quickly as possible. In general, the frame
being taken at the time of the abort will be lost.

mx area detector get last frame number()
Reports the frame number of the most recently acquired frame. Before the first frame (frame 0) is taken, it will
return the value -1.

mx area detector get status()
Returns a status flags value that describes the current state of the area detector. The long integer returned is a
bitmap in which each bit stands for a different status flag.

mx area detector get extendedstatus()
This function returns both the last frame number and the status flags.

mx area detector is busy()
This function reads out the status flag from the detector and returns the value of thebusybit (MXSF AD IS BUSY).

2.7 Frame Transfer

mx area detector setup frame()
This function creates a localMX IMAGE FRAME structure that can be used to hold a frame from the area
detector.

32 CHAPTER 2. USING THE MX AREA DETECTOR API

mx area detector readout frame()
This function tells the area detector to readout the contents of the specified frame number into the image buffer
of the MX server.

mx area detector transfer frame()
This function transfers the contents of one of the frame buffers described in Section 3.1.2 into the frame buffer
that was configured bymx area detectorsetupframe().

mx area detector load frame()
This function loads an image frame from the specified file into one of the frame buffers described in Sec-
tion 3.1.2. The filename specified must refer to a file found on the detector computer itself and must use the
image format configured for this area detector.

mx area detector saveframe()
This function saves one of the frame buffers described in Section 3.1.2 to the specified file. The filename
specified must refer to a file found on the detector computer itself and will use the image format configured for
this area detector.

mx area detector saveframe()
This function copies an image frame from one of the frame buffers described in Section 3.1.2 to another of the
frame buffers.

Utility Functions

mx area detector get frame()
This is a utility function that returns the contents of the specified image frame number to the specifiedMX IMAGE FRAME
structure. This function invokes the following functions in order:mx area detectorsetupframe()followed by
mx area detectorreadoutframe()followed bymx area detectorcorrect frame()and finishing withmx area detectortransfer frame()

mx area detector get sequence()
This is a utility function that fills in the frames in anMX IMAGE SEQUENCE structure by repeated calls to
mx area detectorget frame().

mx area detector get frame from sequence()
This is a utility function that returns a pointer to the specified frame number in the specifiedMX IMAGE SEQUENCE
structure. It is expected that the contents of theMX IMAGE SEQUENCE structure will already have been
filled in by a previous call to a function likemx area detectorget sequence().

2.8 Frame Correction

A hexadecimalcorrectionflagsfield is used for determining which corrections are made. The bits in the correction
flags use the bit definitions made in Section 3.1.2.

mx area detector get correction flags()
Gets the current correction flag settings.

mx area detector set correction flags()
Sets the correction flags.

2.9. REGION OF INTEREST (ROI) FUNCTIONS 33

mx area detector correct frame()
This function causes all of the requested corrections to be performed on the frame in the image frame buffer of
the detector computer. Normal MX client programs should use this function rather than the following function.

mx area detector frame correction()
This function supplies pointers to the image frames to be used for image corrections. Since these frames
are normally located on the detector computer, this function should normally only be invoked on the detector
computer.

mx area detector measurecorrection frame()
This function can be used to create new dark current and flood field frames.

mx area detector measuredark current frame()
This is a macro wrapper formx area detectormeasurecorrection frame() that is only used for dark current
measurements.

mx area detector measureflood field frame()
This is a macro wrapper formx area detectormeasurecorrection frame() that is only used for flood field
measurements.

2.9 Region of Interest (ROI) Functions

mx area detector get roi()
Reports the X and Y dimensions in binned coordinates for the requested ROI number.

mx area detector set roi()
Sets the X and Y dimensions in binned coordinates for the requested ROI number.

mx area detector get roi frame()
This function reads out the contents of the requested ROI number from the supplied originalMX IMAGE FRAME
structure to anotherMX IMAGE FRAME structure that is only large enough to hold the ROI contents.

mx area detector get subframe size()
For the AVIEX PCCD-170170 detector, this reads out the number of columns in the subframe.

mx area detector set subframe size()
This configures the AVIEX PCCD-170170 detector to only readout a restricted number of columns from the
center of a detector element. When used, it disables the operation of the normal ROIs and returns the data in
ROI 0.

2.10 Image Functions

MX comes with a number of functions that operate directly onMX IMAGE FRAME structures and which do not
involve the area detector at all. These functions are defined in the header file$MXDIR/include/mx image.h.

mx image alloc()
This function creates a newMX IMAGE FRAME structure. You must specify the image type, the frame
size, the image format, the pixel order, the bytes per pixel, the header length, and the image length. If you

34 CHAPTER 2. USING THE MX AREA DETECTOR API

want anMX IMAGE FRAME structure that is compatible with your area detector, you are better off letting
mx area detectorsetupframe()or mx area detectorget frame()do it for you, instead of invoking this function
directly.

mx image free()
This function frees all of the memory in use by an existingMX IMAGE FRAME structure.

mx image copy frame()
This copies the contents of oneMX IMAGE FRAME to another.

mx image get exposuretime()
This returns the exposure time in seconds of the exposure that was used to take the original image data. This
information is generally used to perform scaled dark current corrections. If the image has been read from an
image file whose header does not contain the exposure time, the exposure time is set to 1.

mx image get image data pointer()
This returns a pointer to a 1-dimensional buffer containing the image data contained in anMX IMAGE FRAME
structure. If the image size or format of a new frame read into an existingMX IMAGE FRAME structure
by mx area detectorget frameor mx area detectortransfer frameis different than that of the image data that
was already in the structure, then MX may replace the existing image data buffer with a new one. If you need a
pointer to the 1-dimensional image data buffer, it is safest to reinvokemx imageget imagedata pointer()after
each new frame is read into theMX IMAGE FRAME structure.

mx image copy 1d pixel array()
This function copies the pixel data from anMX IMAGE FRAME structure to a 1-dimensional buffer supplied
by the caller.

mx image read file()
This function reads the contents of the requested image file in the requested format into the suppliedMX IMAGE FRAME
structure. The specified filename must exist on the computer that is invoking this function.

mx image write file()
This function writes the contents of the suppliedMX IMAGE FRAME structure in the requested format into
the requested image file. The file created will be on the computer that is invoking this function.

mx image get format type from name()

mx image get format name from type()

These are two utility functions that convert back and forth between ASCII names for the formats such as
GREY16and the corresponding numerical format values.

2.11 Example Programs

Having shown an overview of the API used to control area detectors with MX, we now show some complete programs
that use the API.

2.11. EXAMPLE PROGRAMS 35

2.11.1 Acquiring and Saving Images - example2.c

This program takes a sequence of image frames from an area detector. The program demonstrates both saving them
to a file on the detector computer and transferring them to the client and then saving them on the client computer.

/*
* Name: example2.c
*
* Purpose: This program demonstrates running a multiple frame sequence.
* The program has one command line argument ’use_client_disk’
* which if set to a non-zero value will make the client program
* transfer the frames to its local disk and save them there.
*
* Author: William Lavender
*
*--
*
* Copyright 2006 Illinois Institute of Technology
*
* See the file "LICENSE" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_image.h"
#include "mx_area_detector.h"

static mx_status_type
save_frame_on_detector_computer(MX_RECORD *ad_record,

long last_frame_number);

static mx_status_type
save_frame_on_client_computer(MX_RECORD *ad_record,

MX_IMAGE_FRAME **image_frame,
long last_frame_number);

int
main(int argc, char *argv[])
{

MX_RECORD *mx_database, *ad_record;
MX_IMAGE_FRAME *image_frame;
char mx_database_name[] = "./mx_client.dat";

36 CHAPTER 2. USING THE MX AREA DETECTOR API

char area_detector_name[] = "ad";
double exposure_time, gap_time;
long num_frames, last_frame_number;
long current_frame_number;
unsigned long ad_status_flags;
int use_client_disk;
mx_status_type mx_status;

if (argc != 2) {
fprintf(stderr, "Usage: %s ’use_client_disk_flag’\n", argv[0]);
exit(1);

}

image_frame = NULL;

/* Do we save the frames on the client computer or do we save
* the frames on the detector computer?
*/

use_client_disk = atoi(argv[1]);

/* Initialize the MX database. */

mx_status = mx_setup_database(&mx_database, mx_database_name);

if (mx_status.code != MXE_SUCCESS) {
fprintf(stderr,

"Did not successfully initialize MX database ’%s’.\n",
mx_database_name);

exit(1);
}

/* Find the area detector record in the database. */

ad_record = mx_get_record(mx_database, area_detector_name);

if (ad_record == NULL) {
fprintf(stderr,
"Did not find area detector record ’%s’ in MX database ’%s’.\n",

area_detector_name, mx_database_name);
exit(1);

}

/* Configure a sequence for the area detector that tells it to
* take 10 image frames with an exposure time of 1.0 second
* for each frame and a gap of 0.5 seconds between the frames.

2.11. EXAMPLE PROGRAMS 37

*/

num_frames = 10;
exposure_time = 1.0;
gap_time = 0.5;

fprintf(stderr,
"Taking a multiframe sequence of %ld frames using area detector ’%s’ with "
"an exposure time of %g seconds and a gap time of %g seconds.\n",

num_frames, ad_record->name,
exposure_time, gap_time);

mx_status = mx_area_detector_set_multiframe_mode(ad_record,
num_frames,
exposure_time,
gap_time);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* Arm the detector. */

fprintf(stderr, "Arming the detector.\n");

mx_status = mx_area_detector_arm(ad_record);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* We assume for this example that the area detector is configured
* for internal trigger mode. If so, then we will need to explicitly
* trigger the data acquisition sequence. If we were using an
* external trigger, then this step would not be necessary.
*/

fprintf(stderr, "Triggering the detector.\n");

mx_status = mx_area_detector_trigger(ad_record);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* Monitor the progress of the data acquisition sequence. */

current_frame_number = -1;

38 CHAPTER 2. USING THE MX AREA DETECTOR API

while (1) {
/* Ask for the status of the detector. */

mx_status = mx_area_detector_get_extended_status(ad_record,
&last_frame_number,
&ad_status_flags);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* If the reported last frame number has changed, then there
* are one or more frames available to be read out.
*/

if (last_frame_number != current_frame_number) {

current_frame_number++;

if (use_client_disk) {
mx_status = save_frame_on_client_computer(

ad_record, &image_frame,
current_frame_number);

} else {
mx_status = save_frame_on_detector_computer(

ad_record, current_frame_number);
}

if (mx_status.code != MXE_SUCCESS)
exit(1);

}

/* If the status flags say that the area detector is
* no longer busy, see if there are any frames left
* to read out.
*/

if ((ad_status_flags & MXSF_AD_IS_BUSY) == 0) {

if (current_frame_number >= last_frame_number) {

/* If not, then exit. */

fprintf(stderr,
"The data acquisition sequence has completed.\n");
fprintf(stderr, "Exiting now...\n");

2.11. EXAMPLE PROGRAMS 39

exit(0);
}

}

/* Sleep for a millisecond so that we do not use up
* all of the CPU time on the computer.
*/

mx_msleep(1);
}

fprintf(stderr, "Should never get here.\n");

exit(1);
}

static mx_status_type
save_frame_on_detector_computer(MX_RECORD *ad_record,

long last_frame_number)
{

char savefile_name[80];
mx_status_type mx_status;

fprintf(stderr,
"Saving area detector ’%s’ frame number %ld on the detector computer.\n",

ad_record->name, last_frame_number);

/* Tell the detector computer to readout the requested frame from
* the area detector hardware into the detector computer’s primary
* image frame buffer.
*/

mx_status = mx_area_detector_readout_frame(ad_record,
last_frame_number);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

/* Tell the detector computer to correct the frame that was
* just read out.
*/

mx_status = mx_area_detector_correct_frame(ad_record);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

40 CHAPTER 2. USING THE MX AREA DETECTOR API

/* Tell the detector computer to save the frame on its own
* hard disk.
*
* If we specify a full pathname, the MX server will save
* the file at the requested location.
*
* If we give the server only the filename, it will save the
* file in the default save file directory on the detector
* computer.
*
* If we give it an empty or NULL filename, the MX server
* will choose the next filename on its own.
*/

snprintf(savefile_name, sizeof(savefile_name),
"example2_%04ld.pnm", last_frame_number);

mx_status = mx_area_detector_save_frame(ad_record,
MXFT_AD_IMAGE_FRAME,
savefile_name);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

fprintf(stderr, "Successfully wrote image file ’%s’.\n", savefile_name);

return MX_SUCCESSFUL_RESULT;
}

static mx_status_type
save_frame_on_client_computer(MX_RECORD *ad_record,

MX_IMAGE_FRAME **image_frame,
long last_frame_number)

{
MX_IMAGE_FRAME *local_image_frame;
char savefile_name[80];
size_t image_length;
void *image_data_pointer;
uint16_t *uint16_array;
int i;
mx_status_type mx_status;

fprintf(stderr,
"Saving area detector ’%s’ frame number %ld on the client computer.\n",

ad_record->name, last_frame_number);

2.11. EXAMPLE PROGRAMS 41

/* The first time that mx_area_detector_setup_frame() is invoked,
* it will allocate memory for the image frame data structures.
* On subsequent calls, it checks to see if the already allocated
* image frame data structures are too small to hold the new
* image frame. If they are already big enough, the image frame
* is left alone.
*
* In addition, mx_area_detector_setup_frame() saves a pointer
* to the image frame in the area detector record data structure.
* Later in this routine, mx_area_detector_transfer_frame() will
* read the image sent by the detector computer into that frame.
*/

mx_status = mx_area_detector_setup_frame(ad_record, image_frame);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

/* Tell the detector computer to readout the requested frame from
* the area detector hardware into the detector computer’s primary
* image frame buffer.
*/

mx_status = mx_area_detector_readout_frame(ad_record,
last_frame_number);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

/* Tell the detector computer to correct the frame that was
* just read out.
*/

mx_status = mx_area_detector_correct_frame(ad_record);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

/* Tell the detector computer to send the primary image frame
* across the network to the client computer. If this call
* completes successfully, the image will be accessible via
* the *image_frame pointer.
*/

mx_status = mx_area_detector_transfer_frame(ad_record,

42 CHAPTER 2. USING THE MX AREA DETECTOR API

MXFT_AD_IMAGE_FRAME);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

local_image_frame = *image_frame;

/* Display the first 10 pixels in the frame. You should always
* reinvoke mx_image_get_image_data_pointer() after each time
* you read in a frame.
*/

mx_status = mx_image_get_image_data_pointer(local_image_frame,
&image_length,
&image_data_pointer);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

fprintf(stderr, "The transferred image is %lu bytes long.\n",
(unsigned long) image_length);

uint16_array = image_data_pointer;

for (i = 0; i < 10; i++) {
fprintf(stderr, "image[%d] = %hu\n",

i, (unsigned short) uint16_array[i]);
}

/* We finish by writing the local image to a disk file in PNM format.
*
* FIXME: For the real release, we need to convert this to SMV format.
*/

snprintf(savefile_name, sizeof(savefile_name),
"example2_%04ld.pnm", last_frame_number);

mx_status = mx_image_write_file(local_image_frame,
MXT_IMAGE_FILE_PNM,
savefile_name);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

fprintf(stderr, "Successfully wrote image file ’%s’.\n", savefile_name);

2.11. EXAMPLE PROGRAMS 43

return MX_SUCCESSFUL_RESULT;
}

2.11.2 Measuring Detector Dark Currents - example3.c

/*
* Name: example3.c
*
* Purpose: This program shows how to create a new dark current image frame
* for an area detector.
*
* Author: William Lavender
*
*--
*
* Copyright 2006 Illinois Institute of Technology
*
* See the file "LICENSE" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_image.h"
#include "mx_area_detector.h"

int
main(int argc, char *argv[])
{

MX_RECORD *mx_database, *ad_record;
MX_IMAGE_FRAME *image_frame;
char mx_database_name[] = "./mx_client.dat";
char area_detector_name[] = "ad";
double exposure_time;
long num_exposures;
char *savefile_name;
mx_bool_type busy;
mx_status_type mx_status;

if (argc != 4) {
fprintf(stderr,

44 CHAPTER 2. USING THE MX AREA DETECTOR API

"Usage: %s ’exposure time’ ’num exposures’ ’savefile name’\n",
argv[0]);

exit(1);
}

image_frame = NULL;

exposure_time = atof(argv[1]);
num_exposures = atoi(argv[2]);
savefile_name = argv[3];

/* Initialize the MX database. */

mx_status = mx_setup_database(&mx_database, mx_database_name);

if (mx_status.code != MXE_SUCCESS) {
fprintf(stderr,

"Did not successfully initialize MX database ’%s’.\n",
mx_database_name);

exit(1);
}

/* Find the area detector record in the database. */

ad_record = mx_get_record(mx_database, area_detector_name);

if (ad_record == NULL) {
fprintf(stderr,
"Did not find area detector record ’%s’ in MX database ’%s’.\n",

area_detector_name, mx_database_name);
exit(1);

}

/* Tell the area detector to start acquiring images with which
* to make a dark current correction frame.
*
* There should be no photons hitting the detector while this
* measurement is in progress.
*/

if (num_exposures == 1) {
fprintf(stderr,
"Starting the dark current measurement using "
"1 exposure of %g seconds.\n",

exposure_time);
} else {

2.11. EXAMPLE PROGRAMS 45

fprintf(stderr,
"Starting the dark current measurement using "
"%ld exposures of %g seconds each.\n",

num_exposures, exposure_time);
}

mx_status = mx_area_detector_measure_dark_current_frame(ad_record,
exposure_time, num_exposures);

if (mx_status.code != MXE_SUCCESS) {
fprintf(stderr,
"Unable to start the dark current measurement.\n");
exit(1);

}

/* Wait for the dark current measurement to complete. */

while (1) {
/* See if the measurement is still in progress. */

mx_status = mx_area_detector_is_busy(ad_record, &busy);

if (mx_status.code != MXE_SUCCESS) {
fprintf(stderr,

"An attempt to check the status of the detector failed.\n");
exit(1);

}

if (busy == FALSE) {
/* The measurement is complete, so we can now

* break out of the while() loop.
*/

break;
}

/* Sleep for a millisecond so that we do not use up
* all of the CPU time on the computer.
*/

mx_msleep(1);
}

fprintf(stderr, "The dark current measurement is complete.\n");

/* The new dark current frame will already be in the correct

46 CHAPTER 2. USING THE MX AREA DETECTOR API

* image buffer on the detector computer for the purpose of
* automatic image correction. However, we will also save a
* copy of the new dark current frame to disk. Please note
* that the filename for the save file refers to the disk
* on the detector computer.
*/

mx_status = mx_area_detector_save_frame(ad_record,
MXFT_AD_DARK_CURRENT_FRAME,
savefile_name);

if (mx_status.code != MXE_SUCCESS) {
fprintf(stderr,
"The attempt to save the new dark current frame\n"
"to the file ’%s’ on the detector computer failed.\n",

savefile_name);
exit(1);

}

fprintf(stderr,
"The dark current frame was successfully saved to the file ’%s’ "
"on the detector computer.\n",

savefile_name);

fprintf(stderr, "Program complete.\n");

exit(0);
}

2.11.3 Reading Out a Region Of Interest (ROI) - example4.c

/*
* Name: example4.c
*
* Purpose: This program acquires a single image frame, reads out a region
* of interest and then writes the ROI to a disk file on the client.
*
* Note: If programmed in this manner, only the pixels contained within
* the ROI will be transferred across the network.
*
* Author: William Lavender
*
*--
*
* Copyright 2006 Illinois Institute of Technology

2.11. EXAMPLE PROGRAMS 47

*
* See the file "LICENSE" for information on usage and redistribution
* of this file, and for a DISCLAIMER OF ALL WARRANTIES.
*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_image.h"
#include "mx_area_detector.h"

int
main(int argc, char *argv[])
{

MX_RECORD *mx_database, *ad_record;
MX_IMAGE_FRAME *roi_frame;
void *roi_data_pointer;
uint16_t *uint16_array;
char mx_database_name[] = "./mx_client.dat";
char area_detector_name[] = "ad";
unsigned long i, roi_number, roi[4];
size_t roi_length;
double exposure_time;
char roi_filename[MXU_FILENAME_LENGTH+1];
mx_bool_type busy;
mx_status_type mx_status;

/* Initialize the MX database. */

mx_status = mx_setup_database(&mx_database, mx_database_name);

if (mx_status.code != MXE_SUCCESS) {
fprintf(stderr,

"Did not successfully initialize MX database ’%s’.\n",
mx_database_name);

exit(1);
}

/* Find the area detector record in the database. */

ad_record = mx_get_record(mx_database, area_detector_name);

if (ad_record == NULL) {

48 CHAPTER 2. USING THE MX AREA DETECTOR API

fprintf(stderr,
"Did not find area detector record ’%s’ in MX database ’%s’.\n",

area_detector_name, mx_database_name);
exit(1);

}

/* Configure the detector to acquire a single frame. */

exposure_time = 0.5; /* in seconds */

fprintf(stderr,
"Taking a single frame exposure of %g seconds.\n", exposure_time);

mx_status = mx_area_detector_set_one_shot_mode(ad_record,
exposure_time);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* Arm the detector. */

fprintf(stderr, "Arming the detector.\n");

mx_status = mx_area_detector_arm(ad_record);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* We assume for this example that the area detector is configured
* for internal trigger mode. If so, then we will need to explicitly
* trigger the data acquisition sequence. If we were using an
* external trigger, then this step would not be necessary.
*/

fprintf(stderr, "Triggering the detector.\n");

mx_status = mx_area_detector_trigger(ad_record);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* Monitor the progress of the data acquisition sequence. */

while (1) {
/* Check to see if the detector is still acquiring a frame. */

2.11. EXAMPLE PROGRAMS 49

mx_status = mx_area_detector_is_busy(ad_record, &busy);

if (mx_status.code != MXE_SUCCESS)
exit(1);

if (busy == FALSE) {

/* If the area detector has finished the measurement,
* then break out of the while() loop.
*/

break;
}

/* Sleep for a millisecond so that we do not use up
* all of the CPU time on the computer.
*/

mx_msleep(1);
}

fprintf(stderr, "Exposure complete.\nReading out frame 0.\n");

/* Tell the detector computer to readout the requested frame from
* the area detector hardware into the detector computer’s primary
* image frame buffer.
*/

mx_status = mx_area_detector_readout_frame(ad_record, 0);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* Tell the detector computer to correct the frame that was
* just read out.
*/

fprintf(stderr, "Correcting the frame.\n");

mx_status = mx_area_detector_correct_frame(ad_record);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* Define the boundaries of region of interest 5. This can be done
* either before or after acquiring the image frame.

50 CHAPTER 2. USING THE MX AREA DETECTOR API

*/

roi_number = 5;

/* The following limits are specified in binned coordinates. */

roi[0] = 1000; /* X minimum */
roi[1] = 2000; /* X maximum */
roi[2] = 250; /* Y minimum */
roi[3] = 750; /* Y maximum */

fprintf(stderr,
"Setting ROI %lu to Xmin = %lu, Xmax = %lu, Ymin = %lu, Ymax = %lu\n",

roi_number, roi[0], roi[1], roi[2], roi[3]);

mx_status = mx_area_detector_set_roi(ad_record, roi_number, roi);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* Make sure that mx_area_detector_get_roi_frame() allocates
* a new frame by setting roi_frame to NULL.
*/

roi_frame = NULL;

/* Transfer the contents of the detector ROI to the client ROI frame. */

fprintf(stderr, "Reading out ROI %lu\n", roi_number);

mx_status = mx_area_detector_get_roi_frame(ad_record, NULL,
roi_number, &roi_frame);

if (mx_status.code != MXE_SUCCESS)
exit(1);

/* Display the first 10 pixels in the ROI frame. */

mx_status = mx_image_get_image_data_pointer(roi_frame,
&roi_length,
&roi_data_pointer);

if (mx_status.code != MXE_SUCCESS)
exit(1);

fprintf(stderr, "The transferred ROI frame is %lu bytes long.\n",

2.11. EXAMPLE PROGRAMS 51

(unsigned long) roi_length);

uint16_array = roi_data_pointer;

for (i = 0; i < 10; i++) {
fprintf(stderr, "image[%lu] = %hu\n",

i, (unsigned short) uint16_array[i]);
}

/* We finish by writing the ROI frame to a disk file in PNM format.
*
* FIXME: For the real release, we need to convert this to SMV format.
*/

strlcpy(roi_filename, "roifile.pgm", MXU_FILENAME_LENGTH);

mx_status = mx_image_write_file(roi_frame,
MXT_IMAGE_FILE_PNM,
roi_filename);

if (mx_status.code != MXE_SUCCESS)
exit(1);

fprintf(stderr, "Successfully wrote ROI file ’%s’.\n", roi_filename);

exit(0);
}

52 CHAPTER 2. USING THE MX AREA DETECTOR API

Chapter 3

Area Detector API Reference

3.1 Area Detector Definitions

3.1.1 Area Detector Status Word

The current status of the area detector can be determined by calling eithermx area detector get status()ormx area detector get extendedstatus(),
both of which return a 32-bit status word. The long term plan is that clients will be able to detect hardware faults in
the detector system through this status word. However, at the moment the only status bit in the status word with a
defined use is theBusybit. It is defined as follows:

MXSF AD IS BUSY (0x1)
This status bit is set if the detector is currently recording a sequence of image frames. For One-shot, Multiframe,
Strobe, and Bulb sequences, theBusybit will turn off after the last frame has been acquired. However, for
Continuous and Circular Multiframe modes, theBusybit will continue to be set until the imaging sequence is
explicitly stopped or aborted.

3.1.2 Frame Buffer Types

The MX area detector record makes provision for several different frame buffers that are used both for image transfer
and image correction operations. These buffers are normally identified using individual bits in a hexadecimal bitmask.
The currently defined frame buffers are

MXFT AD IMAGE FRAME (0x1)
This is the primary frame buffer that image frames are initially read into from the area detector hardware.

MXFT AD MASK FRAME (0x2)
The mask frame is optionally used to ignore masked off pixels during the flood field average intensity calcula-
tion.

MXFT AD BIAS FRAME (0x4)
CCD detectors typically add a bias offset to pixels returned by the area detector hardware to raise the values
above the noise floor and to reduce the likelihood that dark current subtraction will produce a negative value.
The bias frame is optionally used to subtract the bias from the frame during image correction. The bias is
exposure time independent.

53

54 CHAPTER 3. AREA DETECTOR API REFERENCE

MXFT AD DARK CURRENT FRAME (0x8)
The dark current frame is optionally used to subtract an exposure time dependent dark current from the image
frame. Normally, the dark current frame should be taken with no photons hitting the imaging surface. De-
pending on the setting ofmx area detector set usescaleddark current flag(), the dark current frame will
either be scaled to match the image frame exposure time, or else the dark current frame will be subtracted as is
without any scaling.

MXFT AD FLOOD FIELD FRAME (0x10)
The flood field frame is optionally used to perform a flood field (also known as flat field) correction to the image
frame. Generally, different pixels in an area detector will return slightly different signals for the same number
of incident photons. This can be thought of as a variation in gain for different pixels. The flood field frame,
if configured, is used to correct for this variation in gain. Ideally, the flood field frame should be taken with a
uniform photon intensity across the entire imaging surface.

Internally, there is an additional image frame buffer, namely the ROI (Region of Interest) frame buffer. In general, this
buffer is a different size than the other buffers above and it does not take part in image correction or normal image and
file I/O. Instead, there are special ROI-specific functions that operate on the ROI frame buffer. In addition, although
the MX area detector class supports multiple ROIs, the ROI frame buffer itself only contains the contents of one ROI
at a time.

3.2 mx area detector abort

NAME
mx area detector abort - immediately stop all area detector activity

SYNOPSIS
mx statustypemx area detector abort (MX RECORD *record);

DESCRIPTION
This function tells the area detector to abort all current operations such as image acquisition as quickly as
possible. If an imaging sequence is currently in progress, the current image frame may be lost.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector stop()

3.3 mx area detector arm

NAME
mx area detector arm - prepare the area detector for image acquisition

SYNOPSIS
mx statustypemx area detector arm (MX RECORD *record);

3.4. MX AREA DETECTOR COPY FRAME 55

DESCRIPTION
This function tells the area detector to perform all operations needed to get ready to be triggered for an imaging
sequence. If the area detector has been set bymx area detector set trigger mode() to a triggering mode that
requires an external trigger, the imaging sequence will start when the first external trigger pulse arrives.

If the area detector is in an internal triggering mode, then the application program must invokemx area detector trigger()
to start the imaging sequence.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set trigger mode(), mx area detector trigger()

3.4 mx area detector copy frame

NAME
mx area detector copy frame - copy a frame on the area detector computer

SYNOPSIS
mx statustypemx area detector copy frame (MX RECORD *record,

long sourceframe type,
long destinationframe type);

DESCRIPTION
This function copies a frame on the area detector control computer from one of the predefined frame buffers to
another of the predefined frame buffers. The argumentssourceframe typeanddestinationframe typeare long
integers that refer to the buffers. The list of available frame buffers can be found in Section 3.1.2

RETURN VALUE
On success, the status code MXESUCCESS is returned.

3.5 mx area detector correct frame

NAME
mx area detector correct frame - tell the detector computer to perform image correction

SYNOPSIS
mx statustypemx area detector correct frame (MX RECORD *record);

DESCRIPTION
This function tells the detector computer to perform all image corrections that are currently enabled. At present,
the types of corrections available aremask correction, bias correction, dark current correction, andflood field
correction.

There are two things that must be true for a given correction to be performed:

• The correction frame must have been loaded into the appropriate buffer on the detector computer. This
can either be done automatically at program startup time or manually by a later call tomx load frame().

56 CHAPTER 3. AREA DETECTOR API REFERENCE

• The bit in the correction flags bitmask for this correction must have been set either at program startup
time or by a call tomx set correction flags().

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector load frame(), mx area detector set correction flags()

3.6 mx area detector get binsize

NAME
mx area detector get binsize- reports the current x and y image binning

SYNOPSIS
mx statustypemx area detector get binsize(MX RECORD *record,

long *x binsize,
long *y binsize);

DESCRIPTION
This function reports the scale factors for image frame binning in the detector. For example, if thex binsize is
2, then the values of pairs of adjacent pixels in the X direction will added together and returned as one pixel
value. If both thex andy binsizes are set to 2, then a two by two square of four pixels will be added together
and returned as one pixel. If the detector is in unbinned mode, the binsizes reported will be 1.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set binsize()

3.7 mx area detector get bytes per frame

NAME
mx area detector get bytes per frame - reports the number of bytes in a single image frame

SYNOPSIS
mx statustypemx area detector get bytes per frame (MX RECORD *record,

long *bytesper frame);

DESCRIPTION
This function reports the number of bytes in a single image frame for the current image format, framesize, and
binning. This size does not include the size of the image header (if present).

RETURN VALUE
On success, the status code MXESUCCESS is returned.

3.8. MX AREA DETECTOR GET BYTES PER PIXEL 57

3.8 mx area detector get bytes per pixel

NAME
mx area detector get bytes per pixel - reports the number of bytes per pixel in the current image format

SYNOPSIS
mx statustypemx area detector get bytes per pixel (MX RECORD *record,

double *bytesper pixel);

DESCRIPTION
This function reports the number of bytes in a single image pixel for the current image format.Bytesper pixel
is returned as a textitdouble due to the fact that there exist image formats for which the number of bytes per
pixel is not an integer.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

3.9 mx area detector get correction flags

NAME
mx area detector get correction flags- reports a bitmask listing the currently enabled image corrections

SYNOPSIS
mx statustypemx area detector get correction flags(MX RECORD *record,

unsigned long *correctionflags);

DESCRIPTION
This function returns a bitmask that describes the set of image corrections that are currently enabled. A given
correction is enabled if the bit for that correction in the bitmask has a value of 1. A description of the bitmask
for the available corrections can be found in the description for themx area detector copy frame() function.
Please note that the MXFTAD IMAGE FRAME (0x1) bit is ignored in this context.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector copy frame(), mx area detector set correction flags()

3.10 mx area detector get extendedstatus

NAME
mx area detector get extendedstatus - reports both the last frame number and the status flags for an area
detector.

SYNOPSIS
mx statustypemx area detector get extendedstatus(MX RECORD *record,

long *last framenumber,
unsigned long *statusflags);

58 CHAPTER 3. AREA DETECTOR API REFERENCE

DESCRIPTION
This function returns both the last area detector frame number just likemx area detector get last frame number()
and the area detector status flags just likemx area detector get status(). See the descriptions of the other two
functions for a more detailed description of what they return.

If the application program is polling for these values across an MX network connection, then this function will
be more efficient than two separate calls to the other two functions, since only one network transaction will
take place.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get last frame number(), mx area detector get status()

3.11 mx area detector get frame

NAME
mx area detector get frame - returns the requested image frame

SYNOPSIS
mx statustypemx area detector get frame (MX RECORD *record,

long framenumber,
MX IMAGE FRAME **frame);

DESCRIPTION
This is a utility function that returns an MXIMAGE FRAME structure that contains the image corresponding
to the requestedframenumber. If framenumberhas the value -1, then the most recently acquired frame will be
returned. This function consolidates a sequence of calls tomx area detector setup frame(), mx area detector readout frame(),
mx area detector correct frame(), andmx area detector transfer frame() into one call.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector setup frame(), mx area detector readout frame(), mx area detector correct frame(),
mx area detector transfer frame()

3.12 mx area detector get framesize

NAME
mx area detector get framesize- reports the current x and y image frame size

SYNOPSIS
mx statustypemx area detector get framesize(MX RECORD *record,

long *x framesize,
long *y framesize);

3.13. MX AREA DETECTOR GET IMAGE FORMAT 59

DESCRIPTION
This function reports the current resolution of image frames in the area detector taking binning into account. For
example, if the maximum frame size is 4096 by 4096 with 2 by 2 binning, thenmx area detector get framesize()
will report a frame size of 2048 by 2048. If the detector is in unbinned mode, the frame size reported will be
the same as that reported bymx area detector get maximum framesize().

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get binsize(), mx area detector get maximum framesize()
mx area detector set framesize()

3.13 mx area detector get image format

NAME
mx area detector get image format - reports the current image format

SYNOPSIS
mx statustypemx area detector get image format (MX RECORD *record,

long *imageformat);

DESCRIPTION
This function returns the detector image format as a numerical value. The list of supported formats can be
found in Section 4.1.1.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set image format()

3.14 mx area detector get last frame number

NAME
mx area detector get last frame number - reports the most recently acquired frame number

SYNOPSIS
mx statustypemx area detector get last frame number (MX RECORD *record,

long *last framenumber);

DESCRIPTION
This function reports the frame number for the image frame most recently acquired. Another way to look at it is
that the frame number returned is the highest frame number for which a call tomx area detector readout frame()
or mx area detector get frame() will currently succeed, if the current sequence is not a circular sequence.
If the area detector has not yet finished taking the first frame in a new sequence, the value reported for
last framenumberwill be -1.

60 CHAPTER 3. AREA DETECTOR API REFERENCE

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get extendedstatus()

3.15 mx area detector get maximum framesize

NAME
mx area detector get maximum framesize- reports the maximum possible x and y image frame size

SYNOPSIS
mx statustypemx area detector get maximum framesize(MX RECORD *record,

long *maximumx framesize,
long *maximumy framesize);

DESCRIPTION
This function reports the maximum possible image frame size for the area detector. If the area detector is
currently in unbinned mode (binsize = 1),mx area detector get framesize()will report the same value.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get binsize(), mx area detector get framesize()

3.16 mx area detector get property double

NAME
mx area detector get property double - returns the value of the requested detector property as a double

SYNOPSIS
mx statustypemx area detector get property double (MX RECORD *record,

char *propertyname,
double *propertydouble);

DESCRIPTION
This function returns the property value for the requested detector property name as a double. If the property
value is not representable as double, then the function returns an error.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get property double(), mx area detector set property double(),
mx area detector set property long(), mx area detector get property string(),
mx area detector set property string()

3.17. MX AREA DETECTOR GET PROPERTY LONG 61

3.17 mx area detector get property long

NAME
mx area detector get property long - returns the value of the requested detector property as a long integer

SYNOPSIS
mx statustypemx area detector get property long (MX RECORD *record,

char *propertyname,
long *propertylong);

DESCRIPTION
This function returns the property value for the requested detector property name as a long integer. If the
property value is not representable as long integer, then the function returns an error.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get property double(), mx area detector set property double(),
mx area detector set property long(), mx area detector get property string(),
mx area detector set property string()

3.18 mx area detector get property string

NAME
mx area detector get property string - returns the string value of the requested detector property

SYNOPSIS
mx statustypemx area detector get property string (MX RECORD *record,

char *propertyname,
char *propertystring,
size t max string length);

DESCRIPTION
This function returns the property string value for the requested detector property name.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get property double(), mx area detector set property double(),
mx area detector get property long(), mx area detector set property long(),
mx area detector set property string()

3.19 mx area detector get roi

NAME
mx area detector get roi - returns the boundaries of the requested region of interest

62 CHAPTER 3. AREA DETECTOR API REFERENCE

SYNOPSIS
mx statustypemx area detector get roi (MX RECORD *record,

unsigned long roinumber,
unsigned long *roi);

DESCRIPTION
This function returns the boundaries of the region of interest (ROI) specified byroi number. The boundaries of
the ROI are expressed in binned coordinates. The data in the boundary rows and columns is considered to be
part of the ROI.

Theroi array argument is an array of four unsigned longs with the boundaries stored in the orderXmin, Xmax,
Ymin andYmax. Here is an example of using this function:

...
MX_RECORD *ad_record;
unsigned long roi_number;
unsigned long roi[4];
...
roi_number = 5;

mx_status = mx_area_detector_get_roi(ad_record, roi_number, roi);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

fprintf(stderr,
"ROI(%lu) = Xmin = %lu, Xmax = %lu, Ymin = %lu, Ymax = %lu\n",

roi_number, roi[0], roi[1], roi[2], roi[3]);
...

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set roi()

3.20 mx area detector get roi frame

NAME
mx area detector get roi frame - returns the requested ROI as an image frame

SYNOPSIS
mx statustypemx area detector get roi frame (MX RECORD *record,

MX IMAGE FRAME *frame);
unsigned long roinumber,
MX IMAGE FRAME **roi frame);

3.21. MX AREA DETECTOR GET SEQUENCE 63

DESCRIPTION
This returns an MXIMAGE FRAME structure that contains the contents of the region of interest (ROI) corre-
sponding to the requestedroi number.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get roi() , mx area detector set roi()

3.21 mx area detector get sequence

NAME
mx area detector get sequence- reads all image frame in a sequence

SYNOPSIS
mx statustypemx area detector get sequence(MX RECORD *record,

long numframes,
MX IMAGE SEQUENCE **sequence);

DESCRIPTION
Reads out all of the frames in an MXIMAGE SEQUENCE. The images are read out by a series of calls to
mx area detector get sequence().

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get frame()

3.22 mx area detector get sequenceparameters

NAME
mx area detector get sequenceparameters- reports the current imaging sequence type

SYNOPSIS
mx statustypemx area detector get sequenceparameters(MX RECORD *record,

MX SEQUENCEPARAMETERS *sequenceparameters);

DESCRIPTION
This function reports the current imaging sequence parameters for the area detector in an MXSEQUENCEPARAMETERS
structure. The MXSEQUENCEPARAMETERS structure is defined as follows:

typedef struct {
long sequence_type;
long num_parameters;
double parameter_array[MXU_MAX_SEQUENCE_PARAMETERS];

} MX_SEQUENCE_PARAMETERS;

64 CHAPTER 3. AREA DETECTOR API REFERENCE

Thesequencetypemember specifies which type of sequence has been requested using the sequence type def-
initions near the top of the$MXDIR/include/mx image.hheader file. Thenumparametersand theparame-
ter array members provide sequence type specific information for the sequence in question.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set sequenceparameters()

3.23 mx area detector get status

NAME
mx area detector get status- gets the area detector status flags

SYNOPSIS
mx statustypemx area detector get status(MX RECORD *record,

unsigned long statusflags);

DESCRIPTION
Returns a bitmap of status flags where the individual flag bits represent different aspects of the current status of
the area detector. The currently defined status flags are described in Section 3.1.1.

At present, the only status flag defined is MXSFAD IS BUSY. It is anticipated that this will expand to include
status flags for internal software or hardware faults of the detector system.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get extendedstatus()

3.24 mx area detector get subframe size

NAME
mx area detector get subframe size- reports the number of columns in a subframe

SYNOPSIS
mx statustypemx area detector get subframe size(MX RECORD *record,

unsigned long *numcolumns);

DESCRIPTION
For the AVIEX PCCD-170170, it is possible to configure the detector hardware to only readout a subset of the
columns in the CCD centered at the center of the<FIXME > element of the detector. This function tells how
many columns are in the subframe. If we are not in subframe mode, the reported subframe size will be -1.
While this mode is in effect, the software ROIs will be relative to the boundaries of this subframe rather than
the dimensions of the full frame.

<FIXME > - How does binning affect this?

3.25. MX AREA DETECTOR GET TRIGGER MODE 65

WARNING
This function is only available for the AVIEX PCCD-170170 CCD detector.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set subframe size()

3.25 mx area detector get trigger mode

NAME
mx area detector set trigger mode- reports the internal/external trigger mode for the detector

SYNOPSIS
mx statustypemx area detector get trigger mode(MX RECORD *record,

long *trigger mode);

DESCRIPTION
This function is used to report whether or not the area detector is in internal or external trigger mode.

WARNING
This function has not yet been really implemented, so for now you should assume that you are in internal trigger
mode.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set trigger mode()

3.26 mx area detector get usescaleddark current flag

NAME
mx area detector get usescaleddark current flag - returns the usescaleddark current flag

SYNOPSIS
mx statustypemx area detector get usescaleddark current flag (MX RECORD *record,

mx bool type *usescaleddark current);

DESCRIPTION
This function returns the state of theusescaleddark currentflag in the detector computer. If theusescaleddark current
flag is set in the detector computer, dark current subtraction will be done using dark current values that have
been rescaled to the actual exposure time of the image. If theusescaleddark currentflag isnot set, then raw
unscaled dark current values will be subtracted instead.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

66 CHAPTER 3. AREA DETECTOR API REFERENCE

SEE ALSO
mx area detector set usescaleddark current flag

3.27 mx area detector is busy

NAME
mx area detector is busy - reports whether or not the area detector is acquiring an image sequence

SYNOPSIS
mx statustypemx area detector is busy (MX RECORD *record,

mx bool type *busy);

DESCRIPTION
This is a utility function that reports whether or not the area detector is currently acquiring images for an
image sequence.mx area detector is busy() is implemented by invokingmx area detector get status()and
returning only the value of the MXSFAD IS BUSY as an MX boolean value.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get status(), mx area detector get extendedstatus()

3.28 mx area detector load frame

NAME
mx area detector load frame - load an image frame into the requested image buffer

SYNOPSIS
mx statustypemx area detector load frame (MX RECORD *record,

long frametype,
char *framefilename);

DESCRIPTION
This function loads an image frame into a frame buffer on the detector computer specified byframe type
from the file on the detector computer specified byframefilename. This function is intended to be used for
loading mask, bias, dark current, and flood field image frames on the detector computer. The image for-
mat for the file must match the image format of the detector computer’s area detector record. If it does not,
the load will fail. The allowed values of theframe type argument can be found in the description of the
mx area detector copy frame() function.

If you want to load an image frame into a user application program, then you should be usingmx image read file()
instead.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector copy frame(), mx area detector saveframe(), mx image read file(),
mx image write file()

3.29. MX AREA DETECTOR MEASURE CORRECTION FRAME 67

3.29 mx area detector measurecorrection frame

NAME
mx area detector measurecorrection frame - perform a series of measurements to construct a correction
frame

SYNOPSIS
mx statustypemx area detector measurecorrection frame (MX RECORD *record,

long correctionmeasurementtype,
double correctionmeasurementtime,
long numcorrectionmeasurements);

DESCRIPTION
mx area detector measurecorrection frame() is used to generate the data with which to construct either a
dark current correction frame or a flood field correction frame. Thecorrectionmeasurementtypeis one of the
two values MXFTAD DARK CURRENTFRAME or MXFT AD FLOOD FIELD FRAME as described in
Section 3.1.2. The correction frame is measured by taking the average ofnumcorrectionmeasurementsworth
of detector images for an exposure time per frame ofcorrectionmeasurementtime.

In general, the dark current frame should be measured without any radiation hitting the detector, while the flood
field frame should be measured with a uniform source of radiation hitting the detector.

Since the absolute intensity of the dark current frame is normally a function of the exposure time, you can
choose to either rescale the dark current intensity to the actual exposure time or else merely subtract the unscaled
dark current value. The choice of mode can be made using the functionmx area detector set usescaleddark current flag().

There are also a pair of convenience macros calledmx area detector measuredark current frame() and
mx area detector measureflood field frame() which are merely front ends tomx area detector measurecorrection frame().

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector measuredark current frame(), mx area detector measureflood field frame(),
mx area detector set usescaleddark current flag()

3.30 mx area detector measuredark current frame

NAME
mx area detector measuredark current frame - perform a series of measurements to construct a dark cur-
rent frame

SYNOPSIS
mx statustypemx area detector measuredark current frame (MX RECORD *record,

double correctionmeasurementtime,
long numcorrectionmeasurements);

DESCRIPTION
mx area detector measuredark current frame() is a convenience macro that invokes the functionmx area detector measurecorrection frame()
with thecorrectionmeasurementtypeset to MXFTAD DARK CURRENTFRAME. See the description of
mx area detector measurecorrection frame() for more information.

68 CHAPTER 3. AREA DETECTOR API REFERENCE

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector measurecorrection frame(), mx area detector measureflood field frame()

3.31 mx area detector measureflood field frame

NAME
mx area detector measureflood field frame - perform a series of measurements to construct a dark current
frame

SYNOPSIS
mx statustypemx area detector measuredark current frame (MX RECORD *record,

double correctionmeasurementtime,
long numcorrectionmeasurements);

DESCRIPTION
mx area detector measureflood field frame() is a convenience macro that invokes the functionmx area detector measurecorrection frame()
with thecorrectionmeasurementtypeset to MXFTAD FLOOD FIELD FRAME. See the description ofmx area detector measurecorrection frame()
for more information.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector measurecorrection frame(), mx area detector measuredark current frame()

3.32 mx area detector readout frame

NAME
mx area detector readout frame - read a frame into the primary image buffer

SYNOPSIS
mx statustypemx area detector readout frame (MX RECORD *record,

long framenumber);

DESCRIPTION
This function reads the requested image frame from the area detector hardware into the primary image buffer
of the detector computer. If the requested frame number is -1, the most recently acquired image will be read
out.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

3.33. MX AREA DETECTOR SAVE FRAME 69

3.33 mx area detector saveframe

NAME
mx area detector saveframe - save a frame from the requested image buffer to a file

SYNOPSIS
mx statustypemx area detector saveframe (MX RECORD *record,

long frametype,
char *framefilename);

DESCRIPTION
This function saves an image frame from the frame buffer on the detector computer specified byframe typeto
the file on the detector computer specified byframefilename. This function is primarily intended to be used for
saving the most recently acquired image frame to a disk file on the detector computer. However, it save frames
from any of the image buffers listed in the description of themx area detector copy frame() function. The
image file will be written using the current image format of the area detector.

If you want a user application program to save an image frame to disk, then you should be usingmx image write file()
instead.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector copy frame(), mx area detector load frame(), mx image read file(),
mx image write file()

3.34 mx area detector set binsize

NAME
mx area detector set binsize- set the current x and y image binning factors

SYNOPSIS
mx statustypemx area detector set binsize(MX RECORD *record,

long x binsize,
long y binsize);

DESCRIPTION
This function sets the scale factor for image frame binning in the detector. For example, if thex binsize is 2,
then the values of pairs of adjacent pixels in the X direction will added together and returned as one pixel value.
If both thex andy binsizes are set to 2, then a two by two square of four pixels will be added together and
returned as one pixel. If you want to put the detector into unbinned mode, then set both binsizes to 1.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get binsize()

70 CHAPTER 3. AREA DETECTOR API REFERENCE

3.35 mx area detector set bulb mode

NAME
mx area detector set bulb mode- change the area detector to use Bulb mode image sequences

SYNOPSIS
mx statustypemx area detector set bulb mode(MX RECORD *record,

long numframes);

DESCRIPTION
This function configures the area detector to use aBulb modeimage sequence. In Bulb mode, the area detector
uses the current state of an external trigger signal to determine when the exposure for the current frame should
start and end. In other words, in Bulb mode the area detector will expose the current frame for as long as the
external trigger input is set to high. When the external trigger input goes to the low state, the exposure for the
current frame ends. The next frame does not start until the external trigger input goes high again. The area
detector stops taking frames once the number of frames specified by thenumframesargument have been taken.

If the area detector has not been configured bymx area detector set trigger mode()to use an external trigger
at the time that the next image sequence is started, the attempt to start the sequence will fail with an error.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set circular multiframe mode(), mx area detector set continuous mode(),
mx area detector set geometrical mode(), mx area detector set multiframe mode(),
mx area detector set one shot mode(), mx area detector set sequenceparameters(),
mx area detector set strobe mode(), mx area detector set trigger mode()

3.36 mx area detector set circular multiframe mode

NAME
mx area detector set circular multiframe mode- change the area detector to use Circular Multiframe mode

image sequences

SYNOPSIS
mx statustypemx area detector set circular multiframe mode(MX RECORD *record,

long numframes,
double exposuretime,
double gaptime);

DESCRIPTION
This function configures the area detector to use aCircular Multiframe modeimage sequence. Circular Multi-
frame mode sequences are almost identical to Multiframe mode sequences as described by the documentation
for mx area detector set multiframe mode(). The only difference is that once the last frame has been ac-
quired, the sequence goes back to the beginning to overwrite the first frame. The sequence does not stop until
explicitly stopped or aborted.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

3.37. MX AREA DETECTOR SET CONTINUOUS MODE 71

SEE ALSO
mx area detector abort(), mx area detector set multiframe mode(), mx area detector stop()

3.37 mx area detector set continuous mode

NAME
mx area detector set continuous mode- change the area detector to use Continuous mode image sequences

SYNOPSIS
mx statustypemx area detector set continuous mode(MX RECORD *record,

double exposuretime)

DESCRIPTION
This function configures the area detector to use aContinuous modeimage sequence. In Continuous mode, the
area detector repeatedly takes image frames that all have the same duration as requested by theexposuretime
argument in seconds. Each new frame overwrites the previous one. The detector will continue taking frames
until explicitly stopped or aborted. It is anticipated that this mode will be mostly useful for diagnostic applica-
tions that want a continuously updated GUI display of images acquired by the detector.

Continuous mode can be used with either an internal trigger or an external trigger. If a strobed external trig-
ger mode been requested bymx area detector set trigger mode(), the detector will take a new frame for
each external trigger pulse received by the detector. If a non-strobed external trigger mode has been selected,
the detector will merely use the first external trigger received to start the sequence and ignore all subsequent
triggers.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector abort(), mx area detector set bulb mode(),
mx area detector set circular multiframe mode(), mx area detector set geometrical mode(),
mx area detector set multiframe mode(), mx area detector set one shot mode(),
mx area detector set sequenceparameters(), mx area detector set strobe mode(),
mx area detector set trigger mode(), mx area detector stop()

3.38 mx area detector set correction flags

NAME
mx area detector set correction flags- specifies which image corrections are to be performed.

SYNOPSIS
mx statustypemx area detector set correction flags(MX RECORD *record,

unsigned long correctionflags);

DESCRIPTION
Thecorrectionflagsargument for this function is a bitmask that describes the set of image corrections to be en-
abled. A given correction is enabled if the bit for that correction in the bitmask has a value of 1. A description of
the bitmask for the available corrections can be found in the description for themx area detector copy frame()
function. Please note that the MXFTAD IMAGE FRAME (0x1) bit has no meaning in this context.

72 CHAPTER 3. AREA DETECTOR API REFERENCE

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector copy frame(), mx area detector get correction flags()

3.39 mx area detector set framesize

NAME
mx area detector get framesize- sets the current x and y image frame size

SYNOPSIS
mx statustypemx area detector get framesize(MX RECORD *record,

long x framesize,
long y framesize);

DESCRIPTION
For some detectors, this function sets the current resolution of image frames in the area detector taking binning
into account. Not all detectors support this function. Some will round the requested dimensions to the reported
size, while others will return an error regardless of the framesize values supplied.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get binsize(), mx area detector get framesize(),
mx area detector get maximum framesize()

3.40 mx area detector set geometrical mode

NAME
mx area detector set geometrical mode- change the area detector to use Geometrical mode image sequences

SYNOPSIS
mx statustypemx area detector set geometrical mode(MX RECORD *record,

long numframes,
double exposuretime,
double gaptime, double exposuremultiplier,
double gapmultiplier);

DESCRIPTION
Geometrical mode sequences are currently only supported by the AVIEX PCCD-170170 CCD detector. Geo-
metrical mode sequences are multiframe sequences that take the number of frames requested by thenumframes
argument. For the first frame, the duration of the exposure time in seconds will be the value requested by the
exposuretimeargument. The gap between the first and the second frames in seconds will be the time requested
by thegap time. For each subsequent frame, the exposure time will be the exposure time for the previous
frame multiplied by the value of theexposuremultipler argument. Similarly, the duration of the gap between
frames will be the previous gap time multiplied by the value of thegap multiplier argument. This means that
the exposure time and the gap time will continue to get longer as the sequence progresses.

3.41. MX AREA DETECTOR SET IMAGE FORMAT 73

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set multiframe mode(),
mx area detector set one shot mode(), mx area detector set sequenceparameters(),
mx area detector set strobe mode(), mx area detector set trigger mode()

3.41 mx area detector set image format

NAME
mx area detector set image format - changes the current image format

SYNOPSIS
mx statustypemx area detector set image format (MX RECORD *record,

long imageformat);

DESCRIPTION
This function sets the detector image format as a numerical value. A list of the supported image formats can be
found in Section 4.1.1.

WARNING
Most detectors do not support this function.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get image format()

3.42 mx area detector set multiframe mode

NAME
mx area detector set multiframe mode- change the area detector to use Multiframe mode image sequences

SYNOPSIS
mx statustypemx area detector set multiframe mode(MX RECORD *record,

long numframes,
double exposuretime,
double gaptime);

DESCRIPTION
This function configures the area detector to use aMultiframe modeimage sequence. In Multiframe mode, all
image frames are of the same duration as specified by theexposuretimeargument in seconds. In addition, the
spacing between all pairs of image frames will be the same as specified by thegap timeargument in seconds.

Multiframe mode can be used with either an internal trigger or an external trigger. If an external trigger
mode has been configured bymx area detector set trigger mode(), the sequence uses the next pulse from

74 CHAPTER 3. AREA DETECTOR API REFERENCE

the external trigger to start the imaging sequences. All subsequent trigger pulses are ignored. The imaging
sequence will stop once the number of image frames requested by thenumframesargument have been taken.

If you want the sequence to loop by going back to overwrite the first frame once the last frame has been
acquired, you should usemx area detector set circular multiframe mode() instead.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set geometrical mode(),
mx area detector set one shot mode(), mx area detector set sequenceparameters(),
mx area detector set strobe mode(), mx area detector set trigger mode()

3.43 mx area detector set one shot mode

NAME
mx area detector set one shot mode- change the area detector to use One-shot mode image sequences

SYNOPSIS
mx statustypemx area detector set one shot mode(MX RECORD *record,

double exposuretime)

DESCRIPTION
This function configures the area detector to use aOne-shot modeimage sequence. In One-shot mode, the
area detector takes a single frame that is exposed for the duration requested by theexposuretime argument.
One-shot mode can be used with either an internal trigger or an external trigger.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector abort(), mx area detector set bulb mode(),
mx area detector set circular multiframe mode(), mx area detector set continuous mode(),
mx area detector set geometrical mode(), mx area detector set multiframe mode(),
mx area detector set sequenceparameters(), mx area detector set strobe mode(),
mx area detector set trigger mode(), mx area detector stop()

3.44 mx area detector set property double

NAME
mx area detector set property double - sets the value of the requested detector property

SYNOPSIS
mx statustypemx area detector set property double (MX RECORD *record,

char *propertyname,
double propertydouble);

3.45. MX AREA DETECTOR SET PROPERTY LONG 75

DESCRIPTION
This function sets the property value for the requested detector property name as a double. If the property value
is not representable as double, then the function returns an error.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get property double(), mx area detector get property long(),
mx area detector set property long(), mx area detector get property string(),
mx area detector set property string()

3.45 mx area detector set property long

NAME
mx area detector set property long - sets the value of the requested detector property

SYNOPSIS
mx statustypemx area detector set property long (MX RECORD *record,

char *propertyname,
long propertylong);

DESCRIPTION
This function sets the property value for the requested detector property name as a long integer. If the property
value is not representable as long integer, then the function returns an error.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get property double(), mx area detector set property double(),
mx area detector get property long(), mx area detector get property string(),
mx area detector set property string()

3.46 mx area detector set property string

NAME
mx area detector set property string - sets the string value of the requested detector property

SYNOPSIS
mx statustypemx area detector set property string (MX RECORD *record,

char *propertyname,
char *propertystring);

DESCRIPTION
This function sets the property string value for the requested detector property name.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

76 CHAPTER 3. AREA DETECTOR API REFERENCE

SEE ALSO
mx area detector get property string(), mx area detector get property value(),
mx area detector set property value()

3.47 mx area detector set roi

NAME
mx area detector set roi - sets the boundaries of the requested region of interest

SYNOPSIS
mx statustypemx area detector set roi (MX RECORD *record,

unsigned long roinumber,
unsigned long *roi);

DESCRIPTION
This function returns the boundaries of the region of interest (ROI) specified byroi number. The boundaries of
the ROI are expressed in binned coordinates. The data in the boundary rows and columns is considered to be
part of the ROI.

Theroi array argument is an array of four unsigned longs with the boundaries stored in the orderXmin, Xmax,
Ymin andYmax. Here is an example of using this function:

...
MX_RECORD *ad_record;
unsigned long roi_number;
unsigned long roi[4];
...
roi_number = 5;

roi[0] = 1000; /* X minimum */
roi[1] = 2000; /* X maximum */
roi[2] = 1250; /* Y minimum */
roi[3] = 1750; /* Y maximum */

mx_status = mx_area_detector_set_roi(ad_record, roi_number, roi);

if (mx_status.code != MXE_SUCCESS)
return mx_status;

...

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get roi()

3.48. MX AREA DETECTOR SET SEQUENCE PARAMETERS 77

3.48 mx area detector set sequenceparameters

NAME
mx area detector set sequenceparameters- sets up any of the available types of image sequences.

SYNOPSIS
mx statustypemx area detector set sequenceparameters(MX RECORD *record,

MX SEQUENCEPARAMETERS *sequenceparameters);

DESCRIPTION
mx area detector set sequenceparameters() is the common function that underlies all of the other com-
mands for selecting specific sequence modes. The command takes a single argument which is an MXSEQUENCEPARAMETERS
structure. The MXSEQUENCEPARAMETERS structure is defined as follows:

typedef struct {
long sequence_type;
long num_parameters;
double parameter_array[MXU_MAX_SEQUENCE_PARAMETERS];

} MX_SEQUENCE_PARAMETERS;

Thesequencetypemember specifies which type of sequence has been requested. Thenumparametersand the
parameterarray members provide sequence type specific information for the sequence in question. In general,
it is simpler to use the higher level sequence specific mode setting functions.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set geometrical mode(),
mx area detector set multiframe mode(), mx area detector set one shot mode(),
mx area detector set strobe mode(), mx area detector set trigger mode()

3.49 mx area detector set strobe mode

NAME
mx area detector set strobe mode- change the area detector to use Strobe mode image sequences

SYNOPSIS
mx statustypemx area detector set strobe mode(MX RECORD *record,

long numframes,
double exposuretime);

DESCRIPTION
This function configures the area detector to use aStrobe modeimage sequence. In Strobe mode, the start of
each frame in the sequence is triggered by an external trigger signal. The exposure time for each frame lasts for
the amount of time in seconds requested by theexposuretimeargument. The area detector stops taking frames
once the number of frames specified by thenumframesargument have been taken. If an external trigger signal

78 CHAPTER 3. AREA DETECTOR API REFERENCE

arrives before the preceding frame has finished, the results are undefined and depend on the particular area
detector hardware in use.

If the area detector has not been configured bymx area detector set trigger mode()to use an external trigger
at the time that the next image sequence is started, the attempt to start the sequence will fail with an error.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set geometrical mode(),
mx area detector set multiframe mode(), mx area detector set one shot mode(),
mx area detector set sequenceparameters(), mx area detector set trigger mode()

3.50 mx area detector set subframe size

NAME
mx area detector set subframe size- tells the area detector to readout only a subframe

SYNOPSIS
mx statustypemx area detector set subframe size(MX RECORD *record,

long numcolumns);

DESCRIPTION
This function, which is available for the AVIEX PCCD-170170, tells the detector hardware to only readout a
subset of the columns in the CCD centered at the center of the<FIXME > element of the detector. While
this mode is in effect, the software ROIs will be relative to the boundaries of this subframe rather than the
dimensions of the full frame. To revert back to full frame operation, call this function again with the number of
columns set to -1.

<FIXME > - How does binning affect this?

WARNING
This function is only available for the AVIEX PCCD-170170 CCD detector.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get subframe size()

3.51 mx area detector set trigger mode

NAME
mx area detector set trigger mode- sets the internal/external trigger mode for the detector

SYNOPSIS
mx statustypemx area detector set trigger mode(MX RECORD *record,

long triggermode);

3.52. MX AREA DETECTOR SET USE SCALED DARK CURRENT FLAG 79

DESCRIPTION
This function will be used to switch between internal and external trigger mode.

WARNING
This function has not yet been really implemented, so for now you should assume that you are in internal trigger
mode.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get trigger mode()

3.52 mx area detector set usescaleddark current flag

NAME
mx area detector set usescaleddark current flag - changes the state of the usescaleddark current flag

SYNOPSIS
mx statustypemx area detector set usescaleddark current flag (MX RECORD *record,

mx bool type usescaleddark current);

DESCRIPTION
This function changes the state of theusescaleddark currentflag in the detector computer. If theusescaleddark current
flag is set in the detector computer, dark current subtraction will be done using dark current values that have
been rescaled to the actual exposure time of the image. If theusescaleddark currentflag isnot set, then raw
unscaled dark current values will be subtracted instead.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector get usescaleddark current flag

3.53 mx area detector setup frame

NAME
mx area detector setup frame - create a new frame or modify the size of an existing one.

SYNOPSIS
mx statustypemx area detector setup frame (MX RECORD *record,

MX IMAGE FRAME *frame);

DESCRIPTION
This function takes a pointer to an MXIMAGE FRAME pointer as its second argument as in this example:

80 CHAPTER 3. AREA DETECTOR API REFERENCE

...
MX_IMAGE_FRAME *frame;
...
mx_status = mx_area_detector_setup_frame(record, &frame);
...

If you assign NULL to theframepointer before invokingmx area detector setup frame(), it assumes that
you want to create a new MXIMAGE FRAME structure with dimensions that match the current configuration
of the specified area detector.

If you assign NULL to theframepointer before invokingmx area detector setup frame(), it assumes that
you just want to verify that the MXIMAGE FRAME object you are passing contains animagedataarray that
is big enough to hold a new image frame read from the detector. If the array is already big enough, then nothing
is done to the MXIMAGE FRAME object. If the array is not big enough, the old array is freed and a new
array is allocated to take its place.

The purpose ofmx area detector setup frame() is to make it easy to always ensure that the image frame
object you are using is big enough to hold a new frame from the area detector, while minimizing the number of
memory allocations that have to be performed.

Please note that framesize, format, and other parameters of the MXIMAGE FRAME are determined by look-
ing at the current configuration of the specified area detector record. If you want to directly specify all of these
parameters yourself, then the function you want to use ismx image alloc().

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx image alloc(), mx image free()

3.54 mx area detector start

NAME
mx area detector start - starts a imaging sequence

SYNOPSIS
mx statustypemx area detector start (MX RECORD *record);

DESCRIPTION
This is a utility function that starts an imaging sequence by invokingmx area detector arm() followed by
mx area detector trigger() .

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector arm(), mx area detector trigger()

3.55. MX AREA DETECTOR STOP 81

3.55 mx area detector stop

NAME
mx area detector stop - stops all area detector activity after the current frame

SYNOPSIS
mx statustypemx area detector stop (MX RECORD *record);

DESCRIPTION
This function tells the area detector to stop any imaging sequence in process after the current frame completes.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector abort()

3.56 mx area detector transfer frame

NAME
mx area detector transfer frame - sends an image frame to a user application

SYNOPSIS
mx statustypemx area detector transfer frame (MX RECORD *record,

long frametype);

DESCRIPTION
This function tells the detector computer to send an image from the requested detector frame buffer to the user
application. The transferred frame will be saved in theimageframebuffer attached to the user application’s
area detector record. You must make sure that theimageframebuffer has been set up in advance by a call
to eithermx area detector setup frame() or mx image alloc() before invoking this function or else it will
return an error.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector setup frame(), mx area detector readout frame(), mx image alloc()

3.57 mx area detector trigger

NAME
mx area detector trigger - sends a internal trigger to the area detector

SYNOPSIS
mx statustypemx area detector trigger (MX RECORD *record);

82 CHAPTER 3. AREA DETECTOR API REFERENCE

DESCRIPTION
This function tells the detector computer to send an internal trigger to the area detector hardware to start an
imaging sequence.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector arm(), mx area detector start()

Chapter 4

Image API Reference

4.1 Image Definitions

4.1.1 Image Formats

Each image handled by MX has a defined image format. The following three formats are the most important ones:

MXT IMAGE FORMAT RGB (1)
This is a 24-bit color format with 8 bits each for Red, Green, and Blue.

MXT IMAGE FORMAT GREY8 (2)
This format is 8-bit greyscale.

MXT IMAGE FORMAT GREY16 (3)
This format is 8-bit greyscale.

These formats are important since all other in memory image formats are eventually converted to one of these three
format by MX. Keep in mind that in memory image formats are not the same as datafile image formats.

The following formats are raw formats as generated by image capture boards:

MXT IMAGE FORMAT RGB565 (1001)
This is a 16-bit color format with 5 bits for red, 6 bits for green, and 5 bits for blue.

MXT IMAGE FORMAT YUYV (1002)
This is a packed YCbCr color format which is known in the Windows world as YUY2.

4.1.2 Datafile Formats

At the moment, only one image file format has been implemented for temporary testing purposes. This format is:

MXT IMAGE FILE PNM (1)
The PNM file format is described athttp://netpbm.sourceforge.net/doc/index.html. It is supported by a wide
variety of image viewing programs in the Linux/Unix world and is supported at least by Irfanview in the
Windows world. This format is not intended for routine use with scientific data, since it does not really have a
place to store header information.

83

84 CHAPTER 4. IMAGE API REFERENCE

4.2 mx image alloc

NAME
mx image alloc - allocate an MXIMAGE FRAME object

SYNOPSIS
mx statustypemx image alloc (MX IMAGE FRAME **frame,

long imagetype,
long *framesize,
long imageformat,
long pixel order,
double bytesper pixel,
size t headerlength,
size t imagelength);

WARNING
The argument list for this function is likely to change in the near future. For now, if you can, you are probably
better off relying onmx area detector setup frame() to initialize the MX IMAGE FRAME structure for you.

DESCRIPTION
This function either creates a new MXIMAGE FRAME object or else changes the size of an existing MXIMAGE FRAME
object that matches the supplied function arguments. If you want to automatically fetch the appropriate config-
uration from your area detector record, you should usemx area detector setup frame() instead.

This function takes as its first argument a pointer to an MXIMAGE FRAME pointer. If the frame pointer
passed is NULL, as in this example

...
MX_IMAGE_FRAME *frame;
...
frame = NULL;
...
mx_status = mx_image_frame(&frame, ...);
...

thenmx image alloc() will create a new MXIMAGE FRAME structure using the requested configuration.

If the frame pointer passed tomx image alloc() is not NULL, mx image alloc() will examine the current
configuration of the supplied MXIMAGE FRAME structure to see if it is already capable of holding an image
frame with the requested configuration. If the object can already hold the frame,mx image alloc() returns
without doing anything else. If the objectcannotalready hold the image frame,mx image alloc() will resize
the imagedataandheaderdataarrays in the object so that they are big enough to hold an image frame with
the new dimensions. If the image frame object is resized, the old contents of theimagedataandheaderdata
arrays are not preserved.

The arguments formx image alloc() as follows:

MX IMAGE FRAME **frame
A pointer to the MXIMAGE FRAME object as described above.

4.3. MX IMAGE COPY 1D PIXEL ARRAY 85

long imagetype
The image type is intended as part of a way to refer to images that are not on the local machine. This fea-
ture is not really implemented yet, so for now you should always use the value MXTIMAGE LOCAL 1D ARRAY
(1) for this argument.

long *framesize
This is a 1-dimensional two element array containing the width and height of the image in pixels. The
first element of the array is the width in pixels, while the second element is the height in pixels.

long imageformat
This argument specifies the greyscale or color format of the image data. The currently supported values
for the image format are described in Section 4.1.1.

long pixelorder
This feature is not yet implemented. Set it to 0.

double bytesper pixel
The number of bytes that corresponds to one pixel. There exist some image formats for which this quantity
is not an integer, so we specify it here as adouble.

sizet headerlength
The length of the image header in bytes. If this length is specified as 0, then no memory will be allocated
for an image header.

sizet imagelength
The length of the image data array in bytes. This length must be greater than 0.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector setup frame(), mx image free()

4.3 mx image copy 1d pixel array

NAME
mx image copy 1d pixel array - copies the image data array to an application program buffer

SYNOPSIS
mx statustypemx image copy 1d pixel array (MX IMAGE FRAME *frame,

void *destinationpixel array,
size t max arraybytes,
size t *num bytescopied);

DESCRIPTION
This function copies the contents of theimagedataarray to an application program supplied buffer. No more
thanmaxarray byteswill be copied to the buffer. On return, thenumbytescopiedpointer will point to the
the number of bytes actually copied to the destination array. This number can be smaller than the requested
number of bytes if the actual length of theimagedata array is shorter than the value ofmaxarray bytes. If
you do not need to know the number of bytes copied, you can set the last argument of the function to a NULL
pointer.

86 CHAPTER 4. IMAGE API REFERENCE

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx image get image data pointer()

4.4 mx image copy frame

NAME
mx image copy frame - copies the contents of one MXIMAGE FRAME object to another

SYNOPSIS
mx statustypemx image copy frame (MX IMAGE FRAME **new frame,

MX IMAGE FRAME *old frame);

DESCRIPTION
This function copies the contents of the existingold frameobject to thenewframeobject, which may or may
not already exist. This function usesmx image alloc() internally, so ifnewframedoes not already exist, it will
be created, while ifnewframedoes already exist, it will be enlarged to contain the copy, if necessary.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx image alloc()

4.5 mx image free

NAME
mx image free - frees an MXIMAGE FRAME structure.

SYNOPSIS
void mx image free (MX IMAGE FRAME *frame);

DESCRIPTION
This function frees all of the data structures allocated for the specified MXIMAGE FRAME object. The object
must not be used after this function has been invoked.

RETURN VALUE
mx image free does not return a value, since thefree() function invoked by it does not return a value either.

SEE ALSO
mx image alloc()

4.6. MX IMAGE GET EXPOSURE TIME 87

4.6 mx image get exposuretime

NAME
mx image get exposuretime - reports the exposure time of an MXIMAGE FRAME

SYNOPSIS
mx statustypemx image get exposuretime (MX IMAGE FRAME *frame,

double *exposuretime);

DESCRIPTION
This function returns the recorded exposure time in seconds for the specified MXIMAGE FRAME object. If
the header of the frame does not contain the exposure time or the frame was read from a file format that does
not store the exposure time, the exposure time will be reported as 1 second.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

4.7 mx image get format name from type

NAME
mx image get format name from type - converts a numerical image format type to a text representation

SYNOPSIS
mx statustypemx image get format name from type (long type,

char *name,
size t max namelength);

DESCRIPTION
This function takes a numerical image format type as defined near the top of the$MXDIR/include/mx image.h
header file and converts it into a matching text representation. The function will only copy up tomaxnamelength
bytes to thenamebuffer. The text representation returned will be in upper case.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx image get format type from name()

4.8 mx image get format type from name

NAME
mx image get format name from type - converts the name of an image format type to a numerical value

SYNOPSIS
mx statustypemx image get format type from name(char *name,

long type);

88 CHAPTER 4. IMAGE API REFERENCE

DESCRIPTION
This function takes the text representation of an image format and converts it to a numerical image format type
as defined near the top of the$MXDIR/include/mx image.h header file. The text representation can be in
either upper or lower case.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx image get format name from type()

4.9 mx image get frame from sequence

NAME
mx image get frame from sequence- returns the requested frame from an MXIMAGE SEQUENCE object

SYNOPSIS
mx statustypemx image get frame from sequence(MX IMAGE SEQUENCE *sequence,

long framenumber,
MX IMAGE FRAME **image frame);

DESCRIPTION
This function returns the MXIMAGE FRAME object corresponding to the requestedframenumberfrom the
specified MXIMAGE SEQUENCE object.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

4.10 mx image get image data pointer

NAME
mx image get image data pointer - returns the length and a pointer to the image data for an MXIMAGE FRAME
object

SYNOPSIS
mx statustypemx image get image data pointer (MX IMAGE FRAME *frame,

size t *image length,
void **image datapointer);

DESCRIPTION
This function returns the length of the image and a pointer to the image data for the specified MXIMAGE FRAME
object. You must know the image format, which can be found atframe-¿imageformat, in order to successfully
manipulate the image data. However, for most area detectors this value will always be the same.

As an example, the AVIEX PCCD-170170 CCD detector always uses aGREY16image format, which means
that the image data made up of 16-bit greyscale pixels. MX already has a C99-compatibleuint16 t typedef in
the$MXDIR/include/mx stdint.h header file which can be used to manipulate this data format.

4.11. MX IMAGE READ FILE 89

WARNING
If an MX imaging function increases the size of theimagedata array in an MXIMAGE FRAME structure,
the old imagedata array will be freed and a new one allocated in its place. In general, the newimagedata
array will be at a different address, which means that animagedata pointer returned by a previous call to
mx image get image data pointer() will no longer be valid. In general, the safest thing to do is to reinvoke
mx image get image data pointer() each time that you need this pointer.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx image copy 1d pixel array()

4.11 mx image read file

NAME
mx image read file - reads an image frame from a disk file into an MXIMAGE FRAME object

SYNOPSIS
mx statustypemx image read file (MX IMAGE FRAME **frame,

unsigned long datafiletype,
char *datafilename);

DESCRIPTION
This function reads an image frame from the disk file specified by thedatafilenameargument on the user
application computer into the specified MXIMAGE FRAME. If needed, the MXIMAGE FRAME object
will be created or resized internally bymx image alloc().

If you want to read an image on the detector computer’s disk into one of the frame buffers of the detector
computer’s server, you should be usingmx area detector load frame() instead.

WARNING
Thedatafile typesupplied must match the actual data format of the disk file or elsemx image read file() will
fail with an error.mx image read file() does not attempt to detect the file format on its own. See Section 4.1.2
for the list of supported datafile formats.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector load frame(), mx image write file()

4.12 mx image write file

NAME
mx image write file - writes the contents of an MXIMAGE FRAME object to a disk file

90 CHAPTER 4. IMAGE API REFERENCE

SYNOPSIS
mx statustypemx image write file (MX IMAGE FRAME **frame,

unsigned long datafiletype,
char *datafilename);

DESCRIPTION
This function writes the contents of an MXIMAGE FRAME to the disk file specified by thedatafilename
argument on the user application computer. You must specify the file format you want in thedatafile type
argument. See Section 4.1.2 for the list of supported datafile formats.

If you want to write an image buffer in the detector computer’s server to a file on the detector computer’s disk,
you should be usingmx area detector saveframe() instead.

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx area detector saveframe(), mx image read file()

Chapter 5

Utility API Reference

5.1 mx get record

NAME
mx get record - Get an MXRECORD object from the MX database.

SYNOPSIS
MX RECORD *mx get record (MX RECORD *mxdatabaserecord,

char *recordname);

DESCRIPTION
mx get record() searches the MX database specified by themx databaserecordargument for the MXRECORD
object that has a name that matches therecord nameargument. Although it is conventional to supply a pointer
to the MX list head record calledmx database, you can actually supply a pointer to any of the records in the
running database and it will find the record with the matching name if it exists.

RETURN VALUE
If successful,mx get record() returns a pointer to the MXRECORD object with the specified name. If no
record with that name exists in the MX runtime database,mx get record() returns a NULL pointer.

SEE ALSO
mx setup database(), mx setup databasefrom array()

5.2 mx setup database

NAME
mx setup database- configures and initializes the MX runtime database

SYNOPSIS
mx statustypemx setup database(MX RECORD **mx databaserecord,

char *databasefilename);

91

92 CHAPTER 5. UTILITY API REFERENCE

DESCRIPTION
mx setup database()is a utility function that does all of the work necessary to create an MX runtime database
that is ready to be used by application programs. In outline,mx setup database()does the following:

• Initialize the MX runtime environment usingmx initialize runtime() .

• Initialize the MX device drivers usingmx initialize drivers().

• Create an empty MX runtime database usingmx initialize record list().

• Setup all of the records in the MX runtime database usingmx read databasefile() followed bymx finish databaseinitialization() .

• Initialize connections to the data acquisition hardware and remote servers usingmx initialize hardware().

After the MX runtime database has been initialized, you may get pointers to individual records in it using the
functionmx get record().

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx get record(), mx setup databasefrom array()

5.3 mx setup databasefrom array

NAME
mx setup databasefrom array - configures and initializes the MX runtime database from an in memory
database

SYNOPSIS
mx statustypemx setup databasefrom array (MX RECORD **mx databaserecord,

long numrecords,
char **recorddescriptionarray);

DESCRIPTION
mx setup databasefrom array() is a variant ofmx setup database()that reads the database records from
an in memory array rather than a disk file.

See Section 2.2.6 for an example of how to usemx setup databasefrom array() .

RETURN VALUE
On success, the status code MXESUCCESS is returned.

SEE ALSO
mx get record(), mx setup database()

Appendix A

Usingmotor to Test an MX Area Detector

Motor is a command-line based MX application program used by some beamlines to control many of their exper-
iments. It is not anticipated that users of MX-controlled area detectors will use themotor program. However, for
initial testing by beamline staff, it may be useful since it implements commands for controlling area detectors. In
addition, it is the only significant user application bundled with the core MX distribution.

If you have chosen the name$MXDIR/etc/motor.dat for your MX client database and setup the MXDIR en-
vironment variable, you can start up themotor program by just typing the commandmotor at a Linux/Unix shell
prompt or Win32 DOS prompt. The procedure should look something like this:

id1:˜$ motor

MX version 1.4.0 (October 20, 2006)
WARNING: Save file ’/home/lavender/scan.dat’ is empty.

motor>

You will not be using MX scans, so do not worry about the error message concerning thescan.datfile.

If you are using an MX server and the server is not running, you will get a series of errors like the following.

id1:˜$ motor

MX version 1.4.0 (October 20, 2006)
WARNING: Save file ’/home/lavender/scan.dat’ is empty.

MXE_NETWORK_IO_ERROR in mx_tcp_socket_open_as_client():
-> connect() to host ’192.168.137.3’, port 9727 failed. Errno = 111. >

Error string = ’Connection refused’.
MXE_NETWORK_IO_ERROR in mxn_tcpip_server_open():
-> The MX server at port 9727 on the computer ’192.168.137.3’ is either >

not running or is not working correctly. You can try to fix this by >
restarting the MX server.

*** Reconnecting to server ’adserver’ at ’192.168.137.3’, port 9727.
MXE_NETWORK_IO_ERROR in mx_tcp_socket_open_as_client():

93

94 APPENDIX A. USING MOTORTO TEST AN MX AREA DETECTOR

-> connect() to host ’192.168.137.3’, port 9727 failed. Errno = 111. >
Error string = ’Connection refused’.

MXE_NETWORK_IO_ERROR in mxn_tcpip_server_open():
-> The MX server at port 9727 on the computer ’192.168.137.3’ is either >

not running or is not working correctly. You can try to fix this by >
restarting the MX server.

motor>

Some of the lines of output are too wide to fit the page in this manual, so we have artificially broken the lines of
output so that all of the output can be seen. The> symbols above mark the places where we have broken the lines.
Note thatmotor attempted to reconnect just in case the failure was a momentary failure. This is a general feature of
MX clients such that if the connection to the server goes down, the client attempts to reconnect to the server the next
time that it wants to send a command to the server.

A.1 Motor Commands

Motor has a large number of commands for controlling a variety of different classes of devices. However, for area
detector use, there are really only three commands you should need to know about.

A.1.1 exit

The first command you should know about is theexit command which allows you to leave themotor program. The
procedure should look like this:

motor> exit
id1:˜$

A.1.2 show record

Theshow record command is useful since it allows you to verify that the MX runtime database is working. Using
this command should look like this:

motor> show record
mx_database list_head
adserver tcp_server "192.168.137.3" 9727
ad network_area_detector 8 0 (0,0,0,0) (0,0,0,0) adserver "ad"
motor>

If you see any error messages starting with prefixes like MXE. . . , then something is wrong with your configura-
tion and you need to fix it.

A.1.3 areadetector

The area detector command is the most important command that you will use, since it allows you access to
much of the functionality of the area detector. You can get help for thearea detector command by typing it at
a motor prompt with no arguments. Generally you can abbreviate command names and command arguments to the
shortest unique string that matches. In addition, you can use the aliasad for area detector .

Thus, if your area detector is named, for example,aviex , you can abbreviate a command like

A.1. MOTOR COMMANDS 95

area_detector aviex set one_shot_mode 2.5

down to something like this

area aviex set one 2.5

or something even shorter like this

ad aviex se o 2.5

NOTE: If the first thing you want to do with a new detector is take an image with it, the quickest place to start is with
thesnap command described below.

The following sections describe the commands listed by thearea detector command’s help message with ex-
planatory comments inserted. Most of these commands are one-to-one matches to the MX Area Detector API de-
scribed in Chapter 3.

Configuration Commands

motor> ad
Usage:

area_detector ’name’ get bytes_per_frame
area_detector ’name’ get bytes_per_pixel
area_detector ’name’ get format
area_detector ’name’ get framesize
area_detector ’name’ set framesize ’x_framesize’ ’y_framesize’
area_detector ’name’ get maximum_framesize

The commands above return information about the current format of image frames in the detector computer.

area_detector ’name’ get trigger_mode
area_detector ’name’ set trigger_mode ’trigger mode’

The trigger commands are used to switch between internal trigger and external trigger modes.

area_detector ’name’ get correction_flags
area_detector ’name’ set correction_flags ’correction flags’

The correction flags commands are used to change the list of corrections applied to image frames, using a hexadecimal
format for displaying the individual bits in the flags value. For each bit that is set to 1, the corresponding correction
will be applied. The bit values are defined in Section 3.1.2.

area_detector ’name’ get property_double ’property_name’
area_detector ’name’ set property_double ’property_name’ ’property_double’
area_detector ’name’ get property_long ’property_name’
area_detector ’name’ set property_long ’property_name’ ’property_long’
area_detector ’name’ get property_string ’property_name’
area_detector ’name’ set property_string ’property_name’ ’property_string’

96 APPENDIX A. USING MOTORTO TEST AN MX AREA DETECTOR

Each area detector has internal parameters that are specific to that model of area detector. The area detectorproperty
commands are used to read and write these values. Each internal property is first given an ASCII name. Then, if the
property has a value that can be represented as a long integer, then theproperty longcommands can be used to change
it. Similarly, if the property has a value that can be represented as a double, then thepropertydoublecommands can
be used. Otherwise, you must use thepropertystringcommands.

Note: Documentation for these properties has not yet been written.

Sequence Commands

area_detector ’name’ get sequence_parameters
area_detector ’name’ set one_shot_mode ’exposure time in seconds’
area_detector ’name’ set continuous_mode ’exposure time in seconds’
area_detector ’name’ set multiframe_mode ’# frames ’exposure time’ ’gap_time’
area_detector ’name’ set circular_multiframe_mode ’# frames’

’exposure time’ ’gap_time’
area_detector ’name’ set strobe_mode ’# frames’ ’exposure time’
area_detector ’name’ set bulb_mode ’# frames’
area_detector ’name’ set geometrical_mode ’# frames’

’exposure time’ ’gap_time’ ’exposure multiplier’ ’gap multiplier’

The sequence commands above can be used to control the type of imaging sequence that is to be performed by the
detector. A description of the available sequence types can be found in Section 2.5.

Binsize and ROI Configuration Commands

area_detector ’name’ get binsize
area_detector ’name’ set binsize ’x_binsize’ ’y_binsize’

Thebinsizecommands are used to control the binning of pixels in the area detector. In general, the allowed bin sizes
are powers of two. Typically, the X and Y bin sizes have the same values, but not all area detectors require this.

area_detector ’name’ get roi ’roi_number’
area_detector ’name’ set roi ’roi_number’ ’xmin’ ’xmax’ ’ymin’ ’ymax’

The ROI commands are used to set the boundaries of regions of interest. The implementation of the ROIs is all
managed in software on the detector computer, so the maximum number of ROIs is limited only by the configuration
of the area detector record in the detector computer’s database.

Please note that the rows and columns specified for the X and Y minima and maxima are included within the
returned ROI data. In other words, a command like this

ad aviex set roi 5 1000 2000 200 500

will return a 1001 column by 301 row array including columns 1000 and 2000 and rows 200 and 500 in the data
returned for ROI 5.

Action Commands

area_detector ’name’ snap ’exposure_time’ ’file_format’ ’filename’

A.1. MOTOR COMMANDS 97

Thesnap command is the simplest way to get the detector to acquire and correct a single frame and then transfer the
frame to a disk file on the client computer. You can choose to save the image in any of the file formats supported by
MX. However, at the moment, the only file format that has been implemented already is PNM format.

Here is an examplesnap command line that commands a 2.5 second exposure and then writes the image to
“myimage.pgm”.

ad aviex snap 2.5 pnm myimage.pgm

Internally, thesnap command selects One-shot mode, starts the detector, waits for the detector to finish, gets the
image data from the detector computer, and then writes it to a file on the local disk.

area_detector ’name’ take frame

The take frame command is somewhat different in that it starts the detector in whatever sequencer mode it hap-
pens to be in, waits for the sequence to finish, and then transfers the file to the memory of the client. It does not write
the file to disk.

area_detector ’name’ write frame ’file_format’ ’filename’
area_detector ’name’ write roiframe ’file_format’ ’filename’

The above commands do exactly what they say, namely, write out the contents of either the primary image buffer or
the ROI image buffer on the client side.

area_detector ’name’ arm
area_detector ’name’ trigger
area_detector ’name’ start
area_detector ’name’ stop
area_detector ’name’ abort

The above commands are the low level primitives for starting and stopping the detector.

area_detector ’name’ get last_frame_number
area_detector ’name’ get status
area_detector ’name’ get extended_status
area_detector ’name’ get busy

The commands above report on the current status of the area detector.

area_detector ’name’ get frame ’frame_number’

Theget frame command does an image readout, image correction, and image transfer to the client. The available
values forframenumberare described in Section 3.1.2.

area_detector ’name’ get roiframe ’roi_number’

The get roiframe command transfers to the client the contents of the specified ROI number. You must have
defined the boundaries for this particular ROI before invokingget roiframe . If you do not, you may end up with
the default ROI boundaries which only contain the single pixel (0,0) in binned coordinates.

area_detector ’name’ readout ’frame_number’

98 APPENDIX A. USING MOTORTO TEST AN MX AREA DETECTOR

The readout command reads out the requested frame number from the camera hardware into the primary image
buffer on the detector computer.

area_detector ’name’ correct

The correct command performs mask, bias, dark current, and flood field corrections to the contents of the pri-
mary image buffer on the detector computer. A given correction will only be performed if the corresponding bit
is set in the area detector correction flags and if a correction frame has been loaded into the corresponding image
buffer on the detector computer. You may find more information about this operation in the function descriptions
of mx area detector set correction flags()andmx area detector correct frame() as well as the definition of the
frame buffer types used in the correction flag bits in Section 3.1.2.

area_detector ’name’ transfer ’frame_type’

Thetransfer command transfers the contents of the requested frame buffer on the detector computer to the primary
image buffer of the client. You may find the definitions of the frame buffer types in Section 3.1.2.

area_detector ’name’ load frame ’frame_type’ ’filename’
area_detector ’name’ save frame ’frame_type’ ’filename’
area_detector ’name’ copy frame ’src_frame_type’ ’dest_frame_type’

The above commands load frames, save frames, and copy frames between the various image buffers on the detector
computer. The frame buffer types are described in Section 3.1.2. The files that frame buffers are loaded from or saved
to are found on the detector computer.

area_detector ’name’ measure dark_current ’measurement_time’ ’# measurements’
area_detector ’name’ measure flood_field ’measurement_time’ ’# measurements’

The above commands measure dark current and flood field images on the detector computer. At the end of the
measurement, the resulting image frames are left in the matching dark current or flood field image buffers on the
detector computer and are ready to be used immediately for correction of new images as they are acquired. However,
the contents of the correction frames will be lost when the detector computer’s server shuts down. If you want to
preserve the contents of the new dark current and flood field correction frames, you must write them to disk using the
save frame command described above.

Appendix B

Python

The existing MX bindings for Python, called MP, will be extended soon to include support for the new MX area
detector class. The plan is that this support will be used to implement a new area detector GUI for MX.

99

