
MX for Area Detectors
for MX 1.5.0

William M. Lavender
Illinois Institute of Technology

Chicago, IL 60616 USA

November 8, 2007



2

MX has been developed by the Illinois Institute of Technology and is available under the following MIT X11
style license.

Copyright 1999 Illinois Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL ILLINOIS INSTITUTE OF TECHNOLOGY BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Illinois Institute
of Technology shall not be used in advertising or otherwise to promote
the sale, use or other dealings in this Software without prior written
authorization from Illinois Institute of Technology.



Contents

1 Introduction 7
1.1 Driver and Platform Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 MX Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 MX Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Installation from Prebuilt Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Installation from Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Before Building MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Cygwin (for Windows platforms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Downloading MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Building MX for the Detector Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.5 Building MX for Client Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Configuring MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Configuring MX for Client Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 Configuring MX for Area Detector Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.4 Configuring mxserver.dat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.5 Running the MX Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Using the MX Area Detector API 25
2.1 Building an MX Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Initializing MX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 mx setup database() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 mx setup database from array() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 mx get record() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Redirecting Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 Example for mx setup database() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.6 Example for mx setup database from array() . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Reading and Writing Area Detector Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Internal Detector Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Frame Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8 Frame Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.9 Region of Interest (ROI) Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



4 CONTENTS

2.10 Image Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.11 Example Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11.1 Acquiring and Saving Images - example2.c . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.11.2 Measuring Detector Dark Currents - example3.c . . . . . . . . . . . . . . . . . . . . . . . . 49
2.11.3 Reading Out a Region Of Interest (ROI) - example4.c . . . . . . . . . . . . . . . . . . . . . . 52

3 Area Detector API Reference 59
3.1 Area Detector Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Area Detector Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1.2 Frame Buffer Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 mx area detector abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 mx area detector arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 mx area detector copy frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 mx area detector correct frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 mx area detector get binsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 mx area detector get bits per pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.8 mx area detector get bytes per frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.9 mx area detector get bytes per pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.10 mx area detector get correction flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.11 mx area detector get detector readout time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.12 mx area detector get extended status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.13 mx area detector get frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.14 mx area detector get framesize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.15 mx area detector get image format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.16 mx area detector get last frame number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.17 mx area detector get maximum frame number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.18 mx area detector get maximum framesize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.19 mx area detector get register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.20 mx area detector get roi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.21 mx area detector get roi frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.22 mx area detector get sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.23 mx area detector get sequence parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.24 mx area detector get sequence start delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.25 mx area detector get status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.26 mx area detector get total acquisition time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.27 mx area detector get total num frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.28 mx area detector get total sequence time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.29 mx area detector get trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.30 mx area detector get use scaled dark current flag . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.31 mx area detector is busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.32 mx area detector load frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.33 mx area detector measure correction frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.34 mx area detector measure dark current frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.35 mx area detector measure flood field frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.36 mx area detector readout frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.37 mx area detector save frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS 5

3.38 mx area detector set binsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.39 mx area detector set bulb mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.40 mx area detector set circular multiframe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.41 mx area detector set continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.42 mx area detector set correction flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.43 mx area detector set framesize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.44 mx area detector set geometrical mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.45 mx area detector set image format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.46 mx area detector set multiframe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.47 mx area detector set one shot mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.48 mx area detector set register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.49 mx area detector set roi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.50 mx area detector set sequence parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.51 mx area detector set sequence start delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.52 mx area detector set streak camera mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.53 mx area detector set strobe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.54 mx area detector set subimage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.55 mx area detector set trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.56 mx area detector set use scaled dark current flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.57 mx area detector setup frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.58 mx area detector start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.59 mx area detector stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.60 mx area detector transfer frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.61 mx area detector trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 Image API Reference 91
4.1 Image Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.1 Image Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.2 Datafile Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.3 Image Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 mx image alloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 mx image copy 1d pixel array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 mx image copy frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 mx image copy header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 mx image free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 mx image get average intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8 mx image get exposure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.9 mx image get format name from type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.10 mx image get format type from name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.11 mx image get frame from sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.12 mx image get image data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.13 mx image read file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.14 mx image rebin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.15 mx image write file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.16 mx sequence get exposure time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.17 mx sequence get frame time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



6 CONTENTS

4.18 mx sequence get num frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Utility API Reference 103
5.1 mx get record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 mx setup database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 mx setup database from array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A Using motor to Test an MX Area Detector 105
A.1 Motor Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.1.1 exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.1.2 show record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.1.3 area detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B MX for Python 111



Chapter 1

Introduction

This manual describes how to install, configure, and use the MX beamline control toolkit http://mx.iit.edu/ for use
with area detectors. Currently, the only supported area detector hardware is the PCCD-170170 from AVIEX LLC,
but it is anticipated that the list of supported detectors will grow with time.

MX is capable of controlling a wide variety of other devices such as motors, counter/timers, MCAs, MCSs, and
so forth. However, since this is of limited relevance to sites that only use MX for its area detector support, support for
these other devices will not be described further in this manual.

1.1 Driver and Platform Support

1.1.1 MX Clients

The network area detector driver used by MX area detector clients runs on all of the platforms currently supported
by MX. As of October 2007, the supported plaftorms include: BSD, Cygwin, DJGPP, eCos, HP-UX, Irix, Linux,
MacOS X, QNX, RTEMS, Solaris, Tru64, VMS, VxWorks, and Windows (Win32).

1.1.2 MX Server

The platforms supported by the MX server depend on the drivers used by your area detector.

• AVIEX PCCD-170170 CCD detector

For this detector, the top level area detector driver, pccd 170170, is layered on top of the video input driver,
epix xclib video input, for the imaging board used to read out frames from the AVIEX camera head. The video
board itself is a PIXCI E4 frame grabber from EPIX, Inc. You can find the hardware manual for the E4 here
http://www.epixinc.com/products/pixci e4.htm. The PIXCI E4 is a PCI Express board that plugs into an x4 PCI
Express slot.

Please note that the company, EPIX, Inc., has absolutely no relation to the control system called EPICS
http://www.aps.anl.gov/epics/. The similarity of the names is completely a coincidence.

The MX epix xclib video input driver depends on the XCLIB library http://www.epixinc.com/products/xclib.htm
provided by EPIX, Inc. for use with their PIXCI line of imaging boards. EPIX, Inc. currently provides versions

7



8 CHAPTER 1. INTRODUCTION

of XCLIB for Windows XP, Windows 2000, Linux, and 32-bit DOS. MX has been tested with version 2.2 of
the XCLIB library.

At present, MX support for the PIXCI E4 has been tested on the following 32-bit operating systems:

– Fedora Core 5 Linux (x86)

– Red Hat Enterprise Linux 5 (x86)

– Debian 4.0 Linux (etch) (x86)

– Windows XP SP2 with Visual C++ 2005 Express.

The versions that run under Linux use recompiled versions of Epix’s kernel module for Fedora Core 4.

Currently, our recommendation is to use Linux on the detector control computer. The main reason for this is
that it is easier to do remote configuration and debugging of a Linux based system. If your firewall allows SSH
connections to the detector control system, that is all that is needed to enable remote support.

It might be possible to get the Linux support working on another distribution, but this depends on the portability
of the binary Linux module provided by EPIX, Inc. with their imaging boards. However, portability of the EPIX
binary module for Linux has not yet been significantly tested by us. The simplest path would be to stick with
the distributions listed above. MX support for the PCCD-170170 detector has not yet been tested with 64-bit
operating systems.

Although the EPIX XCLIB programming library can be downloaded from the EPIX web site, you need a
license key to unpack and install it. In order to get a license key, you must purchase a single developer XCLIB
license from EPIX, Inc. As of late 2007, this license costs $495.

• Software emulated area detector

The soft area detector driver attempts to emulate enough of the behavior of a real area detector that higher
level code will mostly not notice the difference. The soft area detector driver is layered on top of a video input
driver in a similar manner to the design of the pccd 170170 driver mentioned above. The video input driver can
either be an emulated video input or a real video input. The following three choices are the most useful ones:

– Software emulated video input
The soft video input driver generates test images and returns them to the caller. Three types of test images
are currently available.

(1) Diagonal Gradient - This type of test image returns a repeating sequence of four test images, each of
which has a maximum in a different corner of the image. An example database record for a 640 by
480 16-bit greyscale image would look like this:
video0 device video_input soft_vinput "" "" 640 480 GREY16 -1 1 ""

(2) Bands - This type of test image also returns a repeating sequence of four test images. The sequence
is “vertical bands”, “diagonal bands from lower left to upper right”, ”horizontal bands”, and “diag-
onal bands from upper left to lower right”. An example database record for a 4096 by 4096 16-bit
greyscale image would look like this:
video0 device video_input soft_vinput "" "" 4096 4096 GREY16 -1 2 512

The value at the end of the line (512 in the above example) controls how closely spaced the peaks of
the bands are.



1.2. INSTALLATION FROM PREBUILT BINARIES 9

(3) Logarithmic Spiral - This type of test image displays a logarithmic spiral which is defined by the
equation

R = AeBθ

The logarithmic spiral is useful for testing ROI support, since the spiral is asymmetric. An example
database record for a 4096 by 4096 16-bit greyscale image would look like this:
video0 device video_input soft_vinput "" "" 4096 4096 GREY16 -1 3 "5 0.24 10"

The three values inside the string field ("5 0.24 10") at the end of the record are used to tune the
dimensions of the logarithmic spiral. The first parameter A (5 in the above example) determines the
radial scale of the spiral. The second parameter B (0.24 in the above example), sets the rate at which
the value of the exponential above increases. The third parameter C (10 in the above example), sets
the maximum value of θ for which the spiral is computed. For C = 10, the spiral is computed from
θ = 0 to θ = 10π radians.

This driver is available on all MX platforms.

– File-based video input emulator
The file vinput driver reads detector images from files contained in a directory specified in the MX
database file. The driver goes through the files in the image directory in alphanumeric order and loops
back to the first file after returning the last file. The files in the image directory must all be image files in
a format understood by MX. The currently supported formats are SMV and PNM.

– Video4Linux 2
The v4l2 input driver uses any commercial frame grabber or TV capture card that has a Video4Linux
version 2 driver. Video4Linux version 1 drivers are not supported. With this driver, it is possible to
easily change the test image merely by pointing your video camera at a different target. Unfortunately,
Video4Linux 2 only supports 8-bit greyscale images, but the MX area detector support will automatically
adjust to compensate for this.
Obviously, this driver is only available on Linux platforms. Not all Linux distributions include the header
file /usr/include/linux/videodev2.h in their core glibc development package, so you must explicitly en-
able this driver by making the following definition in the file mx/libMx/mxconfig.h:

#define HAVE_VIDEO_4_LINUX_2 1

1.2 Installation from Prebuilt Binaries
Although the server and the client may use different sets of binaries, the process of installation is essentially the
same for both computers. Thus, the following description applies to both the server and its clients unless otherwise
indicated.

Prebuilt Binaries for MX are generally delivered in the form of .tar.gz archives or .zip archives. The first thing
to do is to decide which directory you want to install MX in. Although you are free to install the binaries anywhere
you want, the conventional place to install MX is either in the directory /opt/mx on Linux/Unix or the directory
c:\opt\mx on Windows. On Linux/Unix systems with support for symbolic links, we commonly install to a directory
with a name that contains the MX version number such as /opt/mx-1.5.0 and then use a symbolic link to link this
name to /opt/mx. In this case, the process looks like this

cd /opt
mkdir mx-1.5.0
ln -s mx-1.5.0 mx



10 CHAPTER 1. INTRODUCTION

The last step of this process cannot be done on Windows systems, since they do not support symbolic links.
At this point, you may jump forward to Section 1.4.

1.3 Installation from Source
We describe here the process of building and installing MX from source code on the detector server computer and
follow that with comments about the client computer.

1.3.1 Before Building MX
For real area detector hardware, MX controls the image capture card using software libraries provided by the maker
of the image capture card.

EPIX PIXCI cards

If you need support for the PCCD-170170 detector, you must first download and install the XCAP and XCLIB pack-
ages from the EPIX web site and FTP site, which you can find on the web page http://www.epixinc.com/support/files.htm.
This web page redirects you to various directories on their FTP site underneath the directory ftp://ftp.epixinc.com/software/.
Occasionally, newer versions may be found in the directory ftp://ftp.epixinc.com/downloads/ and you may need to
use a version from here if directed to by AVIEX or EPIX personnel. However, normally the versions found in
ftp://ftp.epixinc.com/software/ are the preferred versions.

MX has been tested with versions 2.2 of XCAP and XCLIB. We have not yet tested with versions of XCAP or
XCLIB newer than that.

XCAP

The XCAP package contains both the kernel mode driver needed by the EPIX software and a user GUI called xcap
which can be used to control the imaging board. Currently you may download the kernel driver from the directory
ftp://ftp.epixinc.com/software/xcap v22/. For Linux, you will want to download the file xcaplnx i386.bin, while for
Windows you will want to download the file xcapwi.exe.

For the EPIX PIXCI E4 card used by the AVIEX PCCD-170170, you install XCAP using the procedure described
in the User’s Manual for the card, which may be found at http://www.epixinc.com/manuals/pixci e14el/index.htm.
The actual installation is described in chapter 3 of that manual. The PIXCI E4 is bundled with a license for the
XCAP-Lite version of the program. XCAP-Lite is what we have used for the development of the MX drivers. On
Linux, by default, the software will end up in the directory /usr/local/xcap, while on Windows, it will end up in the
directory C:\XCAP.

We do not recommend that users use the XCAP-Lite version of the program for normal operation, since it has
limited functionality. In addition, XCAP-Lite will not start if you have configured the kernel mode image buffer for
more than approximately 64 megabytes of memory. At present, we only use XCAP-Lite to generate configuration
files that are to be read by XCLIB.

XCLIB

The XCLIB library is used by third-party application packages like MX to control EPIX PIXCI imaging boards.
You may download the library from the EPIX FTP site’s directory ftp://ftp.epixinc.com/software/xclib v22/. However,



1.3. INSTALLATION FROM SOURCE 11

the license for the development package is not included with the purchase price of the EPIX PIXCI E4. Instead, it is
an additional charge of $495 as of late 2007. The installer for XCLIB will fail unless you have a license key.

For Linux, you should download the xcliblnx version for Fedora Core 4, which is the version intended for the
Linux 2.6 kernel series. For Windows XP, you should download the file xclibwnt.exe. Please be careful to download
files whose names begin with xclib with a b and not files whose names begin with xclip with a p. The xclip versions
include image processing functionality not used by MX and the license cost for those versions is higher. By default,
XCLIB will be installed to /usr/local/xclib on Linux and to C:\XCLIB on Windows. The procedure for installing
XCLIB is not described in any document on the EPIX web site. It is only described in the manual distributed with
licensed versions of the XCLIB development kit.

Please note that in the XCLIB download directory, there are versions of the library for Mandrake 9.1 using the
older Linux 2.4 kernel, for Windows 95/98/ME and for the 32-bit DOS Watcom compiler. We have no plans to
support these older operating system platforms.

Installing the PIXCI Kernel Driver

Application programs communicate with EPIX PIXCI imaging boards through a kernel mode driver. On Win-
dows, this driver is installed automatically by the EPIX installation program for XCAP. Normally, you should not
need to do anything else on Windows.

The Linux version of the EPIX installation program attempts to install a Linux kernel module called pixci. The
installer comes bundled with kernel modules for Fedora Core 4 and Mandrake 9.1. Since these versions of Linux are
obsolete, in general you will have to compile the kernel modules yourself to match the version of the Linux kernel
that you are running. In addition, if you upgrade to a newer version of the kernel, you will need to recompile the
kernel module again.

When run, the XCLIB installation program for Linux will attempt to build and install a kernel module on its own.
If that procedure fails, here is a manual procedure that we have successfully used:

1. If you have installed XCAP in the default location of /usr/local/xcap, then the kernel module source will be
found in the directory /usr/local/xcap/drivers/i386/src 2.6. However, the source as distributed by EPIX for
XCAP 2.2 does not compile with recent version of the Linux 2.6 kernel. Fortunately, the fix is simple.

2. Copy the contents of src 2.6 to a new directory. We typically pick a name based on the version name of the
kernel, such as src 2.6.20-1.2307.fc5smp.

3. Change to the new directory and edit the file pixcipub.c.

4. After the line that contains

#include <linux/interrupt.h>

insert an additional line that contains

#include <linux/utsrelease.h>

5. Compile the kernel module using the make command.

6. Copy the new kernel module to the modules directory in the subdirectory extra. You may have to manually
create the subdirectory. If the kernel you are running is Linux 2.6.20-1.2307.fc5smp, then the full name of the
subdirectory will be /lib/modules/2.6.20-1.2307.fc5smp/extra. You can get the version of the kernel you are
running from the Linux command uname -r.



12 CHAPTER 1. INTRODUCTION

7. Finish by running the command depmod to rebuild the modules.dep in the top level modules directory
for the currently running kernel. In the example given above, that directory will be /lib/modules/2.6.20-
1.2307.fc5smp.

Detector control computers installed by Aviex will already have the necessary kernel module installed in the right
place.

Configuring the PIXCI Kernel Driver

After installing the PIXCI kernel driver, you must now configure the amount of memory reserved for PIXCI image
frame buffers. The default amount of memory reserved tends to be quite small. In fact, on Windows XP the default
appears to be 50000 kbytes which only provides enough memory for one PCCD-170170 frame buffer. Increasing the
amount of memory requires experimenting with the parameters described in section 3.9 (PIXCI Driver Esoterica) of
the PIXCI E4 hardware manual.

For Windows XP, configuring image frame buffers is done through the registry. Instructions on how to do this
can be found in section 3.4 (Windows XP, XP(x64) or Server 2003 Esoterica) of the PIXCI E4 hardware manual. The
relevant registry key is

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\EPIXXCW2\PIXCI

For Linux, configuration of the image frame buffers is done via the command line of the insmod command
that loads the pixci module. Details of the command line arguments can be found in section 3.7 (For Linux) of
the PIXCI E4 hardware manual. The MX source code distribution contains a sample /etc/init.d style script called
driver info/epix xclib/pixci which automates the loading of the pixci module at boot time. The number of image
frames is controlled by the PIXCIPARM variable.

If you request a certain amount of memory for image frame buffers, you are not guaranteed to actually get the
amount of memory you asked for. For example, if you set PIXCIPARM to -IM 2097152, instead of getting 2 gigabytes
of frame buffers, you may instead get around 800 megabytes or enough memory for around 23 frame buffers that are
32 megabytes each in size. Things are even worse on Windows where you may only get 65 megabytes or so and just
1 frame buffer. In order to get more frame buffer memory, it is necessary to artificially limit the amount of memory
available to the operating system. This procedure is described in great detail the PIXCI E4 manual.

For Windows XP, an example of the procedure would be to add an additional entry to C:
BOOT.INI with /MAXMEM=512 appended to the end of the kernel command line. This gives only 512 megabytes to
the operating system and theoretically all of the rest to image frame buffers. The equivalent procedure on Linux is to
add a new entry to /etc/grub.conf or /etc/lilo.conf with mem=512M appended to the end of the kernel command line.

Having done this, you can now change the starting address for frame buffers using the -IA parameter as described
in the PIXCI E4 hardware manual. However, we have had to use a slight modification of the procedure described
in the PIXCI E4 manual. That manual implies that you can set the base address for the frame buffers with the -IA
command to a value equal to the top of operating system memory. Using our example above of 512 megabytes for
the operating system, the manual implies that you could use something like -IA 524288 which would make the
frame buffers start just beyond the top of operating system memory. However, our experience is that this does not
work! Instead, you must leave a small amount of unused memory between the top of operating system memory and
the start of the image frame buffers. For example,

PIXCIPARM=-IM_2097152_-IA_600000_-MB_250000_-MU_3

has been successfully used on a Linux 2.6 system with 4 gigabytes of RAM and provides enough space for 56 image
frames.



1.3. INSTALLATION FROM SOURCE 13

1.3.2 Cygwin (for Windows platforms)

Although MX can be compiled on Windows with Microsoft Visual C++, Borland C++, MinGW, Cygwin, or DJGPP,
the build process is always managed using the Cygwin version of Make. Microsoft’s Nmake cannot be used since the
MX makefiles make use of features not available in Nmake.

Cygwin can be found at the web site http://www.cygwin.com/. In brief, the procedure consists of downloading and
running Cygwin’s setup.exe installation program to download and install the Cygwin packages you need. The bare
minimum needed are the base packages and the make package plus their dependencies. When building MX himself,
the author of MX generally installs a variety of other packages including the Cygwin SSH server to create a more
congenial development environment, but this is not absolutely necessary.

1.3.3 Downloading MX
The MX home page can be found at http://mx.iit.edu/. Official releases can be found on the download page
http://mx.iit.edu/source.html. In the future, when area detector support has been made part of an official MX 1.5.0
release, this will be the best place to get the source code. However, until this happens, you will need to download a
development snapshot or else checkout the code from the MX Subversion repository.

Development snapshots can be downloaded from the directory http://mx.iit.edu/src/devel/. In general, you should
use the development snapshots rather than code checked out from Subversion, since the development snapshots can
generally be counted on to compile and run correctly on the most commonly used MX platforms such as Linux,
Windows, MacOS X, and Solaris.

If you really do need the newest possible code, then you must checkout the code from the MX Subversion reposi-
tory. The various repositories can be browsed with a web browser at http://mx.iit.edu/svn.html. The core MX package
can be checked out with a command like this:

svn checkout http://svn.csrri.iit.edu/mx/trunk mx

This will create a new MX source tree in the subdirectory mx which is ready to be configured and built.
Please bear in mind that the Subversion repository is in constant change with commits sometimes taking place

several times a day. The most recent commit is not guaranteed to work correctly or even compile correctly at any
given moment, so, in general, you are better off using a development snapshot as described above.

1.3.4 Building MX for the Detector Computer
Building MX is a multistep process.

1. The first step is to edit the top level makefile. Relative to the directory you unpacked MX into, the name of this
file is mx/Makefile.

In the makefile, the first thing that you will want to do is to change the value of the variable MX ARCH to
match the platform that you are compiling the code. For AVIEX area detectors, the only suitable choices are
linux and win32.

Then, you will need to change the value of the MX INSTALL DIR variable. In general, this can be anywhere
you want. Typically, the author generally chooses a name containing the version number of MX such as
/opt/mx-1.5.0 on Linux or c:/opt/mx-1.5.0 on Windows. On Linux, this directory will generally be symlinked
to /opt/mx.

Warning: For Windows, you must use forward slashes (/) in the file name, rather than backslashes (\). Using
backslashes here will cause the build process to fail.



14 CHAPTER 1. INTRODUCTION

A more general warning is that you must not use filenames that include spaces anywhere in the MX makefiles,
since that will also cause the build to fail. On Windows, this means that you must use c:/progra∼1 rather than
c:/Program Files and c:/docume∼1 rather than c:/Documents and Settings. This is all a consequence of the
way that Gnu make processes filenames.

2. The next step is to edit the file mx/libMx/mxconfig.h. This file is used to enable or disable the compilation
drivers that make use of software libraries external to MX that are not guaranteed to be available. For the
AVIEX PCCD-170170 detector, you will need to define the HAVE EPIX XCLIB flag as follows:

#define HAVE_EPIX_XCLIB 1

If you wish to include the Video4Linux 2 driver for test purposes as well, then you will also need to make the
definition

#define HAVE_VIDEO_4_LINUX_2 1

All of the other defines should be set to 0.

3. The last file to edit is mx/libMx/Makehead.linux or mx/libMx/Makehead.win32, depending on your plat-
form. What you must do here is make sure that the correct version of the macros INCLUDES, LIB DIRS, and
LIBRARIES is uncommented. On Linux, the correct version to uncomment is

INCLUDES = $(MX_INCLUDES)
LIB_DIRS = -L$(MX_LIB_DIR) $(EPIX_XCLIB_LIB_DIRS)
LIBRARIES = $(EPIX_XCLIB_LIBRARIES) -lpthread -lrt -lm

while on Windows, the correct version is

INCLUDES = $(MX_INCLUDES) $(EPIX_XCLIB_INCLUDES)
LIBRARIES = $(WIN32_LIBS) $(EPIX_XCLIB_LIBS)

If the EPIX, Inc. XCLIB library was not installed in the default location, you will also need to find the definition
of the macro EPIX XCLIB DIR and change it to match the location that XCLIB was installed to. Please note
that on Windows you must use escaped backslashes (\\) in the filenames mentioned here.

4. Now go to the top level source code directory mx and type the command make depend. This step constructs files
named Makefile.depend in each of the mx/libMx, mx/motor, mx/server, mx/update, and mx/util directories.
These are used to determine which files must be recompiled when a given MX file is modified. This step is not
strictly necessary, but it does no harm to do it.

5. At this point, we are ready to compile and link MX. To do this, type the command make in the top level directory
mx. If you are building a snapshot or a released version of MX, this should compile without any errors. If you
get any errors, this should be reported to the author.

If you obtained the source code tree you are trying to compile from the trunk branch of the MX Subversion
repository, not all revisions found there are guaranteed to compile or work correctly. Normally, you should
only try the Subversion repository directly if you require some feature that is not already available in a released
MX version or a snapshot version from the http://mx.iit.edu/src/devel/ directory.



1.4. CONFIGURING MX 15

6. The final step is to type make install in the top level directory mx. You must make sure to do this using an
account that has permission to write to the installation directory. If this is a system directory, you will need
to su to root on Linux, or switch to an account with adminstrative privileges on Windows. If you are merely
installing a private copy into your own directory, then changing accounts will not be necessary.

1.3.5 Building MX for Client Computers

Building MX on a client computer uses essentially the same process as building it for the detector computer. In
fact, if you wish, you may copy the version you built for the detector computer to your client computer. On Linux,
this should work without any changes, since the EPIX XCLIB library is statically linked to libMx.so as long as the
version of glibc on the client computer is the same version or newer than the version on the computer you originally
compiled MX on. However, on Windows, if you want to do this, you will need to copy the EPIX XCLIB DLL to the
client computer.

If you wish to compile MX separately for the client computer, only a few changes need to be made. First, you
must make the definition

#define HAVE_EPIX_XCLIB 0

in the client’s copy of mx/libMx/mxconfig.h. You must also make sure that the INCLUDE, LIB DIRS, and LI-
BRARIES macros in your platform specific makefile do not include any references to the EPIX libraries. In addition,
if you are compiling on a different platform, you will need to change MX ARCH in the top level Makefile to match
your platform. The client side version of MX should compile on any of the platforms mentioned in Section 1.1.1.

1.4 Configuring MX

If you are at a site that is using MX to control the entire beamline, setting up the configuration files can be a fair
amount of work and will not be covered in this document. However, if you are only using MX to control your area
detector, then you should be able to use the example configuration files shown in this document essentially as is.

1.4.1 Environment Variables

For MX to operate, you must set up two or three environment variables correctly. These are:

MXDIR - This environment variable should contain the name of the top level installation directory for MX. Typi-
cally, for Linux/Unix systems, this will be /opt/mx.

For Windows systems, this variable typically will be c:/opt/mx. Please note that for this case on Windows
systems, you must use a forward slash (/).

PATH - You must also add the application binary directory to the PATH environment variable. For Linux/Unix
systems, this will generally be $MXDIR/bin.

On Windows, if MXDIR is c:/opt/mx, then the correct string to add to the path will be c:\opt\mx\bin. Note
that for the PATH variable, you use backslashes (\)

For Linux/Unix systems, there is generally one more environment variable to set.



16 CHAPTER 1. INTRODUCTION

LD LIBRARY PATH - For most Linux and Unix platforms, this environment variable tells the operating system
where to find shared libraries. Generally, it should be set to the value $MXDIR/lib. However, a couple of
supported MX platforms use an environment variable with a different name for this purpose. On MacOS X,
the correct environment variable to use is DYLD LIBRARY PATH, while on HP-UX the correct environment
variable is SHLIB PATH.

In the MX source code tree, the file mx/scripts/mxsetup.sh is a full featured example of what needs to be done on
Linux/Unix systems with a shell using the Bourne shell syntax. On most systems, all you will need to do is to define
the environment variable MXDIR before sourcing mxsetup.sh. Usually MXDIR should be defined to have the same
value as the MX INSTALL DIR from the top level MX makefile. If you make install to one location and then copy
the installed binary tree to a different location, you will need to change the MXDIR environment variable to point to
the top level directory in the new location.

The mx/scripts directory also contain briefer examples of what to do for the Linux/Unix C shell (mxsetup.csh)
and for Windows (mxsetup.bat).

1.4.2 Configuring MX for Client Computers
MX client computers generally need to setup one configuration file. This file will have the same contents regardless
of whether the server manages a real area detector or a software emulated area detector. Traditionally, this file has the
name $MXDIR/etc/motor.dat, although you can actually use any filename you want as long as you pass the correct
filename to mx setup database(). A file like the following should work for most installations:

adserver server network tcp_server "" "" 0x20000000 192.168.137.3 9727
ad device area_detector network_area_detector "" "" 8 adserver ad

The first field is the server flags field. Currently if you are using the software emulated area detector, you should
set this line to 0x20000000, which tells the client to use blocking I/O. This is due to a limitation of the functionality
of the software emulated area detector and will not be necessary with a real area detector. For a real area detector,
you should set this field to 0x0 so that the client can time out if the server fails.

The 192.168.137.3 field is the IP address of the server. You can also specify a domain name like mxserver.example.com
here, but I generally recommend using numerical IP addresses here, since this means that you can skip doing a Do-
main Name Service lookup when your client starts. The last argument 9727 is the port number of the MX server on
the remote computer. Although most installations will use the standard value of 9727, the port number is selectable
so that you can run more than one MX server on a given computer.

In the second line, the string ad at the start of the line is the name of the MX record that controls your area
detector. This name must be passed to mx get record() after you invoke mx setup database(). At the end of the line,
the number 8 is the maximum number of software ROIs configured for this area detector. This value should match the
value set in the server’s configuration file. adserver tells MX that this device is controlled by the MX server defined
on the first line, while the trailing ad entry is the name of the area detector record on the remote MX server.

1.4.3 Configuring MX for Area Detector Servers
There are four files you may need to configure for an MX server.

1. $MXDIR/etc/mxserver.acl

This file contains a list of IP addresses or domain names that are permitted to connect to the MX server. There
should be one address per line. Here is an example.



1.4. CONFIGURING MX 17

192.168.137.3
192.168.137.6
192.168.238.*
*.example.com
beamline?.example.net

Note that the wildcard character ”*” can match any string of characters, while the wildcard character ”?”
only matches a single character. Thus, for this example, any computer on the 192.168.238 subnet or at ex-
ample.com can connect to the server. In addition, any computer with a name like beamline1.example.net,
beamline2.example.net, and so forth, can also connect.

Please note that the MX server checks the address of the remote client before reading even a single byte from
the client. If the client’s host IP is not on the access control list, the connection is dropped without sending any
response back.

2. $MXDIR/etc/mxserver.dat

This file configures the devices used by the MX server and is described in detail below.

3. $MXDIR/etc/mxserver.opt

If it exists, this file supplies additional command line arguments to the MX server. The most commonly used
argument here is -t, which tells the server to print out the name of each record, just before it starts to configure
the hardware for that record. This option is useful for cases where the MX server hangs during startup if you
want to see which record is causing it to hang. For a system with only a few records, such as an area detector,
it is probably simplest to always specify -t here.

If you want the MX server to support event callbacks, then you must add the -c command line argument as
well. Event callbacks are used to make it possible for dark current measurements and flood field measurements
to complete asynchronously without blocking. Event callbacks are not on by default since this is a fairly new
feature of the MX server. After we have more experience with the new event callbacks, we will change the
server so that event callbacks are on by default.

4. $MXDIR/etc/mxuser.dat

If it exists, this file lists the name of the user account that the MX server should be run under. At present, this
feature only works on Linux/Unix systems and only functions if the server startup script $MXDIR/sbin/mx is
started as root. In general, we recommend that the MX server be run as a non-root user such as mx to limit
the scope of damage if someone were to break into your computer via the MX server. So far this has never
happened, but it is best to be prepared.

5. $MXDIR/etc/mxupdate.dat

If it exists, this file contains a list of MX variables to be saved by the mxupdate program to a file at periodic
intervals. After the mxserver process starts, the mxupdate program will restore the saved values to the newly
running MX server.

1.4.4 Configuring mxserver.dat

The contents of the $MXDIR/etc/mxserver.dat depend on which kind of area detector you are using.



18 CHAPTER 1. INTRODUCTION

AVIEX PCCD-170170

For the AVIEX PCCD-170170 CCD detector, you should use an mxserver.dat file that looks like this:

ready device digital_output soft_doutput "" "" 0
xclib interface generic epix_xclib "" "" /opt/mx/etc/pccd_170170_v9.fmt 0x0
port interface camera_link epix_camera_link "" "" 9600 0.5 1
rs232 interface rs232 camera_link_rs232 "" "" 9600 8 N 1 N 0x0 0x0 -1 0x0 port
epix device video_input epix_xclib_video_input "" "" 16384 1024 grey16 -1 xclib 1 ready 0x0 0x0
trigger device digital_output epix_xclib_doutput "" "" 0 epix
ad device area_detector pccd_170170 "" "" 0 "" "" "" "" epix port trigger 0x1 0x8

Let us describe in detail what each of these lines mean.

Record ready
This line defines a record ready of type soft doutput. The ready record is a placeholder for a “ready for external
trigger” feature of the epix record used for debugging. If this record is defined as a soft doutput record, the
ready signal will be thrown away.

The fields in this record have the following meaning:

Name Value Datatype Description
name ready 1-d string Name of the record.
mx superclass device recordtype Driver superclass.
mx class digital output recordtype Driver class.
mx type soft doutput recordtype Driver type.
label “” 1-d string Intended for use by GUIs.
acl description “” 1-d string ACLs not yet implemented.
value 0 hex number Initial output value.

Record xclib
This line defines the record xclib which is of type epix xclib. This record manages the interface to the EPIX
XCLIB software library. The fields in this record have the following meaning:

Name Value Datatype Description
name xclib 1-d string Name of the record.
mx superclass interface recordtype Driver superclass.
mx class generic recordtype Driver class.
mx type epix xclib recordtype Driver type.
label “” 1-d string Intended for use by GUIs.
acl description “” 1-d string ACLs not yet implemented.
format file /opt/mx/etc/pccd 170170 v9.fmt 1-d string Name of EPIX config file.
epix xclib flags 0x0 hex number epix xclib option flags.

format file is the name of an EPIX configuration file created by XCAP that is used to initialize the PIXCI E4
board when the MX server is started. Such files normally have the file extension .fmt. In general, you should
only use .fmt files provide by Aviex. You should normally leave epix xclib flags alone.

Record port
The port record controls communication with the Camera Link serial port. The fields in this record have the
following meaning:



1.4. CONFIGURING MX 19

Name Value Datatype Description
name port 1-d string Name of the record.
mx superclass interface recordtype Driver superclass.
mx class camera link recordtype Driver class.
mx type epix camera link recordtype Driver type.
label “” 1-d string Intended for use by GUIs.
acl description “” 1-d string ACLs not yet implemented.
baud rate 9600 long Serial port speed.
timeout 0.5 double Communication timeout in seconds.
serial index 1 ulong Camera Link serial port index number.

In general, you should not change any of these values.

Record rs232
The rs232 record provides a way of communicating with a Camera Link serial port via an MX RS-232 record.
The justification for having such a record is so that RS-232 specific applications like mxserial or the rs232
command in motor can be used with Camera Link ports. The fields in this record have the following meaning:

Name Value Datatype Description
name rs232 1-d string Name of the record.
mx superclass interface recordtype Driver superclass.
mx class rs232 recordtype Driver class.
mx type camera link rs232 Recordtype Driver type.
label “” 1-d string Intended for use by GUIs.
acl description “” 1-d string ACLs not yet implemented.
speed 9600 long Serial port speed.
word size 8 long Serial port word size.
parity N char Serial port parity.
stop bits 1 long Number of stop bits.
flow control N char Serial port flow control.
read terminators 0x0 hex number Line read terminators.
write terminators 0x0 hex number Line write terminators.
timeout -1 double Communication timeout in seconds.
rs232 flags 0x0 hex number RS-232 option selection.
camera link record port record Name of the record using the

epix camera link driver.

In general, you should not change any of these values.

Record epix
The epix record controls the EPIX PIXCI E4 imaging board used by the PCCD-170170 area detector. The
fields in this record have the following meaning:



20 CHAPTER 1. INTRODUCTION

Name Value Datatype Description
name rs232 1-d string Name of the record.
mx superclass device recordtype Driver superclass.
mx class video input recordtype Driver class.
mx type epix xclib video input Recordtype Driver type.
label “” 1-d string Intended for use by GUIs.
acl description “” 1-d string ACLs not yet implemented.
framesize 16384 1024 1-d array of length 2 Video input initial framesize.
image format name grey16 1-d string Image format (16-bit greyscale)
byte order -1 long Pixel byte order (-1 means auto-

matically discovered)
xclib record xclib record XCLIB interface record.
unit number 1 long XCLIB board number.
ready for trigger name ready 1-d string The name of a digital output

record that goes high when the
PIXCI E4 is ready for an exter-
nal trigger.

epix xclib vinput flags 0x0 hex number EPIX video input option flags.
write test value 0x0 hex number For debugging.

In general, you should not change any of these values.

Record trigger
The trigger digital output record is used by the detector control computer to send a trigger signal to the camera
head. This signal is used to implement internal triggering for the PCCD-170170. The fields in this record have
the following meaning:

Name Value Datatype Description
name trigger 1-d string Name of the record.
mx superclass device recordtype Driver superclass.
mx class digital output recordtype Driver class.
mx type epix xclib doutput Recordtype Driver type.
label “” 1-d string Intended for use by GUIs.
acl description “” 1-d string ACLs not yet implemented.
value 0 hex number Initial output value.
epix xclib vinput record epix record Name of the PIXCI driver board that

has the attached digital output port.

In general, you should not change any of these values.

Record aviex



1.4. CONFIGURING MX 21

Name Value Datatype Description
name ad 1-d string Name of the record.
mx superclass device recordtype Driver superclass.
mx class area detector recordtype Driver class.
mx type pccd 170170 recordtype Driver type.
label “” 1-d string Intended for use by GUIs.
acl description “” 1-d string ACLs not yet implemented.
maximum num rois 8 long Maximum number of ROIs
initial correction flags 0x100f hex number Initial setting for the area detector correction

flags.
mask filename “” 1-d string Name of the file containing the mask frame.
bias filename “” 1-d string Name of the file containing the bias frame.
dark current filename “” 1-d string Name of the file containing the dark current

frame.
flood field filename “” 1-d string Name of the file containing the flood field

frame.
video input record epix record The name of the video input record.
camera link record port record The name of the Camera Link record.
internal trigger record spare record This record is used to generate the trigger

pulse sent to the camera head for the PCCD-
170170’s internal trigger mode.

initial trigger mode 0x1 hex number Select either internal trigger (0x1) or external
trigger (0x2).

pccd 170170 flags 0x8 hex number Configuration options for the PCCD-170170.
geometrical spline filename “” 1-d string Name of the geometrical correction spline file.
geometrical mask filename “” 1-d string Name of the geometrical correction mask file.

In general, you should not change any of these values.

For arbitrary drivers, you can get a fairly terse list of the field names and their datatypes by running the command
$MXDIR/bin/mxdriverinfo -f pccd 170170, if you replace pccd 170170 with the name of the driver you are really
interested in. In general, we will not describe the detailed meanings of records that you are not expected to change.

The first modifiable field in the ad record is the maximum num rois field which, as it says, sets the maximum
number of regions of interest available to the user. In the example above, it is set to 8. In general, both the client and
the server should be configured to use the same maximum number of regions of interest. Each region of interest uses
enough memory to hold a copy of the region of interest data. If the region of interest covers the entire frame, then
it will use as much memory as an entire frame. However, the memory for a given region of interest is not allocated
until the first time it is used.

Next comes the initial corrections flags field which specifies the initial value for the area detector correction flags
field when the program starts up. The rightmost digit specifies the linear image corrections to be performed on new
image data. You can find the definitions of the flag bits in Section 3.1.2. In addition, there is a geometrical correction
flag 0x1000 that turns on or off the geometrical correction stage of image correction.

Then come the mask filename, bias filename, dark current filename, and flood field filename fields which specify
the names of the initial files to be used for image correction. If they are not set to empty strings, the contents of the
specified file will be loaded into the MX server at server startup time. If a given correction filename is set to “”, then
that correction will not be performed.



22 CHAPTER 1. INTRODUCTION

The video input record and camera link record fields should not be changed. Setting the initial trigger mode
field to 0x1 tells the area detector record to start with internal trigger. The pccd 170170 flags field should always be
set to 0x8. You should not change the value of pccd 170170 flags unless instructed to do so by AVIEX personnel.

The next field is the geometrical spline filename field which contains spline parameters that are used by the
geometrical correction process to undistort the image frame. The last field geometrical mask filename is an additional
mask frame used by the geometrical correction process. If both of these filenames are not specified, the geometrical
correction process will not work.

Software Emulated Area Detector with Software Generated Images

In order to test using an area detector emulated entirely in software, you should use the following mxserver.dat file:

video device video_input soft_vinput "" "" 4096 4096 grey16 -1 1
ad device area_detector soft_area_detector "" "" 8 "" "" "" "" video 0x1

In the record description for the soft area detector record, the field containing the number 8 is the maximum num rois
field and the four fields following it are the various correction files, just like for the pccd 170170 driver discussed
above. The last two fields are the video input record and initial trigger mode fields as described above.

The definition of the soft vinput record should probably be left alone, unless you want to change the image
framesize from 4096 by 4096 to something else. The last field in this record is the image type field. In the future,
changing this field will allow you to change the type of image generated. At present, the only supported value is 1,
which causes the generated images to repeat with in a cycle of four frames, with the maximum intensity in a different
corner for each of the four frames.

Software Emulated Area Detector with Images from a Directory of Frames

The file vinput driver generates the image frames sent to clients by reading them from a directory of already existing
frames, such as from another area detector.

video device video_input file_vinput "" "" 4096 4096 grey16 -1 smv /opt/mx/etc/test_frames
ad device area_detector soft_area_detector "" "" 8 "" "" "" "" video 0x1

The driver returns the files in the specified directory in alphanumeric order. After reading the last file in the
directory, the driver loops back to the first file. It is essential that all of the files in the directory be image files in
formats that MX supports, since the MX driver assumes that all of the files are in the format specified in the record
definition. At present, MX supports the SMV and PNM image formats.

Software Emulated Area Detector with Video4Linux 2 Generated Images

This mode of operation replaces the generation of image frames in software with frames read in from a video camera
or a TV capture card. For this case, you should use an mxserver.dat that looks like this:

video device video_input v4l2_input "" "" 640 480 GREY8 -1 /dev/video0 1
ad device area_detector soft_area_detector "" "" 8 "" "" "" "" video 0x1

Although this driver makes many kinds of software testing easier, it is not able to generate images as large as
a typical area detector and most consumer cameras do not support square images. In addition, Video4Linux 2 only
supports 8-bit greyscale. Thus, it is a less faithful emulation of the real behavior of an area detector.



1.4. CONFIGURING MX 23

1.4.5 Running the MX Server
Linux

MX normally expects mxserver and mxupdate to be run under a user account of its own called mx. The purpose of this
is to limit the amount of damage that can be caused by a hacker that breaks into the system. It is possible to run the
server under another account, even root, if you specify the name of that account in the file $MXDIR/etc/mxuser.dat.
On Linux systems, the mx account can be created with a command like this:

useradd -c MX -m mx

The mx account should have a locked password.
For Linux and Unix systems, MX comes with a System V style startup script which is installed at the location

$MXDIR/sbin/mx. To manually start, stop, or restart the MX server, you can use the System V style syntax, assuming
MXDIR=/opt/mx:

/opt/mx/sbin/mx start
/opt/mx/sbin/mx stop
/opt/mx/sbin/mx restart

To get automatic startup of the MX server when the machine boots, all you need to do is to arrange that the
$MXDIR/sbin/mx script be invoked at system startup time. On a Linux computer that uses the System V style init,
you must go into the rc?.d directories for each run level that you want to run the MX server in and make a symbolic
link to the $MXDIR/sbin/mx script.

For example, on a Fedora or Red Hat Enterprise Linux system with MXDIR=/opt/mx, you would go into the
directory /etc/rc.d/rc2.d and make a symbolic link with the following command

ln -s /opt/mx/sbin/mx S99mx

This tells the System V init system that you want to start the MX server at the end of system startup for run level 2.
You would add similar symbolic links to the other run levels that you want it to start in.

For system shutdown, you make similar symbolic links in the run level directories for run levels 0 and 6. For
example,

ln -s /opt/mx/sbin/mx K00mx

tells init to shut down the MX server at the start of system shutdown or reboot.

Windows

On Windows, you can start the MX server by running the batch file. $MXDIR/sbin/mx.bat. This file is merely a
wrapper around the $MXDIR/sbin/mxserver.exe binary to set up its command line arguments correctly. The simplest
way to get the server to start automatically when the Windows machine boots is to configure the Windows machine
to automatically log into the account you will be running the MX server from and then configure the mx.bat script as
a Startup item. It may be possible to run the MX server as a service using the srvany.exe program from the Windows
Resource Kit, but we have not tested this.



24 CHAPTER 1. INTRODUCTION



Chapter 2

Using the MX Area Detector API

2.1 Building an MX Client

Setting up the makefile to build an MX client is quite straightforward. Here is an example for Linux or Unix:

#
# Use defines like these if you are linking to an installed version of MX.
#
MXDIR = /opt/mx-1.5.0

MX_LIB_DIR = $(MXDIR)/lib
MX_INCLUDE_DIR = $(MXDIR)/include

#
# Use defines like these if you are linking to a copy of MX in a private
# build directory.
#

#MX_LIB_DIR = /home/lavender/mxdev/mx-1.5.0/mx/libMx
#MX_INCLUDE_DIR = $(MX_LIB_DIR)

CFLAGS = -g -DOS_LINUX -DDEBUG -Wall -Werror -I$(MX_INCLUDE_DIR)

mx_client: mx_client.o
gcc -g -o mx_client mx_client.o -L$(MX_LIB_DIR) -lMx

mx_client.o: mx_client.c
gcc $(CFLAGS) -c mx_client.c

clean:
-rm *.o mx_client

25



26 CHAPTER 2. USING THE MX AREA DETECTOR API

Here is the same example for Windows using Visual C++ 2005 Express:

# Do not forget that filenames and pathnames supplied to Gnu make
# must _not_ include spaces. That is the reason for the use of
# progra˜1 below rather than "Program Files".
#
MSDEV_DIR = c:\\progra˜1\\micros˜4

WIN32_LIBS = $(MSDEV_DIR)\\lib\\wsock32.lib $(MSDEV_DIR)\\lib\\winmm.lib \
$(MSDEV_DIR)\\lib\\advapi32.lib $(MSDEV_DIR)\\lib\\user32.lib \
$(MSDEV_DIR)\\lib\\gdi32.lib $(MSDEV_DIR)\\lib\\uuid.lib

# Manifests are a feature of Visual C++ 2005. For earlier versions of
# Visual C++, you can leave out the manifest logic.

MSMANIFEST_TOOL = ‘echo "$(MSDEV_DIR)\\bin\\mt" | tr \\\\ / ‘

#
# Use defines like these if you are linking to an installed version of MX.
#
MXDIR = c:\\opt\\mx-1.5.0

MX_LIB_DIR = $(MXDIR)\\lib
MX_INCLUDE_DIR = $MXDIR\\include

# Use defines like these if you are linking to a copy of MX in a private
# build directory.

#MX_LIB_DIR = c:\\docume˜1\\lavender\\mxdev\\mx-1.5.0\\mx\\libMx
#MX_INCLUDE_DIR = $(MX_LIB_DIR)

CFLAGS = -DOS_WIN32 -DDEBUG -nologo -Zi -WX -I$(MX_INCLUDE_DIR)

mx_client.exe: mx_client.obj
link /debug /nologo /out:mx_client.exe mx_client.obj \

/nodefaultlib:libc $(MX_LIB_DIR)\\libMx.lib $(WIN32_LIBS)
$(MSMANIFEST_TOOL) -nologo -outputresource:mx_client.exe\;1 \

-manifest mx_client.exe.manifest
rm -f mx_client.exe.manifest

mx_client.obj: mx_client.c
cl $(CFLAGS) -c mx_client.c

clean:
-rm *.o mx_client



2.2. INITIALIZING MX 27

2.2 Initializing MX

2.2.1 mx setup database()
Most MX client programs should start by calling an MX utility function called mx setup database(). Calling it looks
like this:

...

MX_RECORD *mx_database;
char mx_database_filename[] = "/opt/mx/etc/motor.dat";
mx_status_type mx_status;

mx_status = mx_setup_database( &mx_database, mx_database_filename );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

...

mx setup database() encapsulates all of the operations required to use a database file to initialize a running MX
database in your client or server process. Once mx setup database() has returned successfully, you can be sure that
you have successfully connected to the remote server(s) and your runtime database is ready to be used.

This example demonstrates two MX data types that you will encounter all of the time in MX programming. The
first data type is the MX RECORD structure. MX RECORDs are the most important object type in MX and for the
most part have a 1 to 1 relationship to the actual hardware being controlled by the experiment. Thus, an area detector
will have an MX RECORD that represents it, and the imaging board that the area detector communicates with will
have an MX RECORD that represents it, and so forth.

The MX RECORD structure is designed to be use as a mostly opaque type. The only member of it that you are
likely to use is the name value. For example, you could print out the name of the mx database record in the example
above with code like this:

...

printf("The name of the MX database record is ’%s’.\n", mx_database->name);

...

The output of this line should look like this:

The name of the MX database record is ’mx_database’.

The MX in-memory database is maintained as a circular linked list of MX RECORD structures. The MX RECORD
returned by mx setup database() is referred to as the “list head” record and is always named “mx database”. The list
head record maintains information about the MX database as a whole.

The MX RECORD data type is defined near the top of the header file $MXDIR/include/mx record.h. Do not
be alarmed by the complexity of the data structure you find there. You should not have to know about any of it unless
you plan to write your own new MX drivers.

The other important data type is the mx status type. Most, but not all, MX functions have an mx status type
structure as the value returned by the function. The mx status type structure is a fairly simple structure that has only
three element. It is defined as follows:



28 CHAPTER 2. USING THE MX AREA DETECTOR API

typedef struct {
long code; /* The error code. */
const char *location; /* Function name where the error occurred. */
char *message; /* The specific error message. */

} mx_status_type;

Most MX functions will return to their caller either with a line like this

return MX_SUCCESSFUL_RESULT;

if the function was successful, or they will do something like this

...
static const char fname[] = "mx_test_function()";
...
return mx_error( MXE_PERMISSION_DENIED, fname,

"You do not have sufficient privilege to perform this test." );
...

In the latter case, by default the MX program will send to stderr a message that looks like this

MXE_PERMISSION_DENIED in mx_test_function():
-> You do not have sufficient privilege to perform this test.

It is possible to redirect or suppress such messages using the functions described below in Section 2.2.4.
Note that, by convention, most MX functions will start with a definition of the form

static const char fname[] = "mx_function_name()";

The C99 standard has now added an equivalent feature to this. However, most of our supported platforms do not
yet support the C99 version of the C standard, so we must continue to add our own function name strings for the
forseeable future.

2.2.2 mx setup database from array()
mx setup database from array() is an alternate to mx setup database() that reads in the records from an array of
character strings instead of a disk file. This function may be used as follows:

....
#define NUM_RECORDS 2
....
MX_RECORD *mx_database;
char db_array[NUM_RECORDS][80];
char server_name[] = "192.168.137.3";
long server_port = 9727;
mx_status_type mx_status;

snprintf( db_array[0], sizeof(db_array[0]),
"adserver server network tcp_server \"\" \"\" 0x20000000 %s %ld",

server_name, server_port );



2.2. INITIALIZING MX 29

strlcpy( db_array[1],
"ad device area_detector network_area_detector \"\" \"\" 8 adserver ad",

sizeof(db_array[1]) );

mx_status = mx_setup_database_from_array( &mx_database,
NUM_RECORDS, db_array );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

....

2.2.3 mx get record()
In order to use a device controlled by MX, you must get a pointer to the MX RECORD object describing it. This
operation is performed by the function mx get record(). Here is an example of using mx get record():

...
MX_RECORD *mx_database;
MX_RECORD *ad_record;
char ad_record_name[] = "ad";

ad_record = mx_get_record( mx_database, ad_record_name );

if ( ad_record == NULL ) {
return mx_error( MXE_NOT_FOUND, fname,
"The record ’%s’ was not found in the running MX database.",

ad_record_name );
}
...

mx get record() is a fairly simple function. You hand it a pointer to the MX database and the name of the record
you want to find and it either returns a pointer to the new record or a NULL pointer if the record was not found. Note
that the record name you specify must match the name in your client side database file. Otherwise, the record will
not be found.

2.2.4 Redirecting Output
MX has four different classes of output that it sends to the user. These include debug, info, warning, and error
messages. By default, all of these messages are sent to the stderr stream. MX provides four functions that can
potentially redirect each of these types of output to a different location. These are: mx set debug output function(),
mx set info output function(), mx set warning output function(), and mx set error output function().

Each one of these functions takes a single argument which is a pointer to a function that takes a char * as its single
argument and which returns void. For example, if we define the following function

static void my_info_output( char *string )
{



30 CHAPTER 2. USING THE MX AREA DETECTOR API

printf( "MY_INFO_OUTPUT: %s\n", string );
}

and then make the call

mx_set_info_output_function( my_info_output_function );

then subsequent calls like this

mx_info("This is a test.");

will generate output like this

MY_INFO_OUTPUT: This is a test.

2.2.5 Example for mx setup database()
Here we show a complete example that loads an MX database, gets a pointer to the area detector record, and finishes
by checking that it is indeed an network area detector record.

/*
* Name: example1a.c

*
* Purpose: This program demonstrates how to initialize MX

* using a database file.

*
* Author: William Lavender

*
*--------------------------------------------------------------------------

*
* Copyright 2006 Illinois Institute of Technology

*
* See the file "LICENSE" for information on usage and redistribution

* of this file, and for a DISCLAIMER OF ALL WARRANTIES.

*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_driver.h"

int
main( int argc, char *argv[] )
{

MX_RECORD *mx_database, *area_detector_record;
char mx_database_name[] = "./mx_client.dat";



2.2. INITIALIZING MX 31

char area_detector_name[] = "ad";
mx_status_type mx_status;

mx_status = mx_setup_database( &mx_database, mx_database_name );

if ( mx_status.code != MXE_SUCCESS ) {
fprintf( stderr, "Did not successfully open MX database ’%s’.\n",

mx_database_name );
exit(1);

}

area_detector_record = mx_get_record( mx_database, area_detector_name );

if ( area_detector_record == NULL ) {
fprintf( stderr, "Did not find record ’%s’ in MX database ’%s’.\n",

area_detector_name, mx_database_name );
exit(1);

}

if ( area_detector_record->mx_type != MXT_AD_NETWORK ) {
fprintf( stderr,

"MX record ’%s’ is not a network area detector record.\n",
area_detector_record->name );

fprintf( stderr, "Instead, it is of type ’%s’.\n",
mx_get_driver_name( area_detector_record ) );

exit(1);
}

printf( "Successfully found network area detector ’%s’.\n",
area_detector_record->name );

exit(0);
}

This example introduces a few new features. First are the MX include file definitions

#include "mx_util.h"
#include "mx_record.h"
#include "mx_driver.h"

The first include file $MXDIR/include/mx util.h contains a large number of utility definitions and functions. In
particular, it is the header file that defines mx status type. The second header file $MXDIR/include/mx record.h
defines the MX RECORD structure as well as a variety of other structures and generic functions to manipulate
records. All of the MX functions in the above example are defined in mx record.h. The last include file named
$MXDIR/include/mx driver.h contains a list of the numerical driver type codes and is included in this program in
order to get the definition of the MXT AD NETWORK macro.

Two other additions of note are the the use of the mx type field of the MX RECORD structure in the statement



32 CHAPTER 2. USING THE MX AREA DETECTOR API

if ( area_detector_record->mx_type != MXT_AD_NETWORK ) {

and the use of the function mx get driver name() which returns the character string name of the driver for this record.
It will always be the same text which appears in the fourth field of the MX record definition in the MX database file.

2.2.6 Example for mx setup database from array()
Here is the same example as in the previous section rewritten to use mx setup database from array():

/*
* Name: example1b.c

*
* Purpose: This program demonstrates how to initialize MX

* using a database stored in an array.

*
* Author: William Lavender

*
*--------------------------------------------------------------------------

*
* Copyright 2006 Illinois Institute of Technology

*
* See the file "LICENSE" for information on usage and redistribution

* of this file, and for a DISCLAIMER OF ALL WARRANTIES.

*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_driver.h"

#define NUM_RECORDS 2
#define LINE_LENGTH 80

int
main( int argc, char *argv[] )
{

MX_RECORD *mx_database, *area_detector_record;
char server_host[] = "192.168.137.3";
long server_port = 9827;
char area_detector_name[] = "ad";
char **db_array;
mx_status_type mx_status;

db_array = malloc( 2 * sizeof(char *) );



2.2. INITIALIZING MX 33

if ( db_array == NULL ) {
fprintf( stderr,

"Could not allocate row pointer for db_array.\n" );
exit(1);

}

db_array[0] = malloc( LINE_LENGTH * sizeof(char) );

if ( db_array[0] == NULL ) {
fprintf( stderr,

"Could not allocate row 0 of db_array.\n" );
exit(1);

}

db_array[1] = malloc( LINE_LENGTH * sizeof(char) );

if ( db_array[1] == NULL ) {
fprintf( stderr,

"Could not allocate row 1 of db_array.\n" );
exit(1);

}

snprintf( db_array[0], LINE_LENGTH,
"adserver server network tcp_server \"\" \"\" 0x0 %s %ld",

server_host, server_port );

snprintf( db_array[1], LINE_LENGTH,
"%s device area_detector network_area_detector \"\" \"\" 8 adserver ad",

area_detector_name );

mx_status = mx_setup_database_from_array( &mx_database,
NUM_RECORDS, db_array );

if ( mx_status.code != MXE_SUCCESS ) {
fprintf( stderr, "Did not successfully open MX database array.\n");
exit(1);

}

area_detector_record = mx_get_record( mx_database, area_detector_name );

if ( area_detector_record == NULL ) {
fprintf( stderr, "Did not find record ’%s’ in the MX database.\n",

area_detector_name );
exit(1);

}



34 CHAPTER 2. USING THE MX AREA DETECTOR API

if ( area_detector_record->mx_type != MXT_AD_NETWORK ) {
fprintf( stderr,

"MX record ’%s’ is not a network area detector record.\n",
area_detector_record->name );

fprintf( stderr, "Instead, it is of type ’%s’.\n",
mx_get_driver_name( area_detector_record ) );

exit(1);
}

printf( "Successfully found network area detector ’%s’.\n",
area_detector_record->name );

exit(0);
}

2.3 Reading and Writing Area Detector Settings
MX has a variety of functions for reading and writing internal area detector settings. The following list summarizes
the functions available of this type.

mx area detector get maximum framesize()
This function reports the resolution that the detector has if it is in unbinned mode.

mx area detector get framesize()
This function reports the current resolution of the detector.

mx area detector set framesize()
This function sets the the resolution of the detector to the nearest size that is actually supported by the detector.

mx area detector get image format()
Returns a constant that describes the image format.

mx area detector get bytes per pixel()
Returns the number of bytes that correspond to a pixel. There exist image formats for which this ratio is not an
integer, so mx area detector get bytes per pixel() reports back the bytes per pixel as a C double rather than as
an integer.

mx area detector get bytes per frame()
Returns the number of bytes in an image frame using the current image format and the current framesize.

mx area detector get bits per pixel()
Returns the resolution in bits of a single pixel.

mx area detector get trigger mode()
Reports whether the area detector is using internal or external triggering.

mx area detector set trigger mode()
Specifies whether the area detector should use internal or external triggering.



2.4. INTERNAL DETECTOR REGISTERS 35

2.4 Internal Detector Registers
Each kind of detector has a variety of internal registers that are specific to that model. Those internal registers are
read and written using the following set of functions. Each register is referred to by an ASCII name. The following
functions are provided for reading and writing internal registers.

mx area detector get register()
mx area detector set register()

These two functions read and write register values as longs.

2.5 Sequences
For an area detector, a sequence is a series of one or more image frames that are taken after a single trigger is sent to
the area detector. In the most general case, each frame can have a different exposure time and each pair of frames can
be separated by a different separation time.

In MX, the instructions for taking a sequence are encoded in an MX SEQUENCE PARAMETERS structure.
This structure is found in the MX header file $MXDIR/include/mx image.h and is defined like this:

typedef struct {
long sequence_type;
long num_parameters;
double parameter_array[MXU_MAX_SEQUENCE_PARAMETERS];

} MX_SEQUENCE_PARAMETERS;

The sequence type structure member specifies the type of sequence to be executed. The parameter array member
contains all of the parameters used by the particular type of sequence, while num parameters tells you how many
parameters are in the array. Bear in mind that not all types of sequences supported by MX are available for all types
of area detectors.

The mx area detector set sequence parameters() function can be used to specify the parameters for the next
sequence to be run and mx area detector get sequence parameters() can be used to report the current sequence pa-
rameter settings. Here is an example of how to use mx area detector set sequence parameters() for One-shot mode,
which is used to take one frame and then stop:

...
MX_RECORD *ad_record;
MX_SEQUENCE_PARAMETERS seq_params;
...
seq_params.sequence_type = MXT_SQ_ONE_SHOT;
seq_params.num_parameters = 1;
seq_params.parameter_array[0] = 0.5; /* Exposure time of 0.5 seconds. */

mx_status = mx_area_detector_set_sequence_parameters( ad_record,
&seq_params );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

....



36 CHAPTER 2. USING THE MX AREA DETECTOR API

However, each sequence type has a wrapper function that can be used as a simplified interface to that type of
sequence. Thus, for the one-shot case above, it would be more common to use this method instead:

...
MX_RECORD *ad_record;
...
/* Request a single frame with a 0.5 second exposure time. */

mx_status = mx_area_detector_set_one_shot_mode( ad_record, 0.5 );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

....

A variety of convenience functions have been defined for setting up particular kinds of sequences. Please note that
not all types of sequences are available for all types of detectors.

mx area detector set one shot mode()
A one-shot sequence takes a single frame for the requested exposure time and then stops.

mx area detector set continuous mode()
A continuous sequence repeatedly takes frames for the requested exposure time, without any explicit gaps
between the frames until commanded to stop. Each new frame overwrites the previous frame. This mode is
useful for live display of images from the detector.

mx area detector set multiframe mode()
This type of sequence takes a specified number of frames with each frame going into a separate frame buffer.
All of the frames have the same exposure times and the gaps between the frames are all the same as well.

mx area detector set circular multiframe mode()
This mode is almost identical to the multiframe mode. However, after the detector takes the last requested
frame, it loops back to the start of the frame sequence and starts overwriting old frames.

mx area detector set strobe mode()
This type of sequence takes a specified number of frames with each frame going into a separate frame buffer.
The start of exposure for each frame is triggered by an external trigger. This mode can be thought of as edge-
triggered. Each frame has the same exposure time.

mx area detector set bulb mode()
This type of sequence takes a specified number of frames with each frame going into a separate frame buffer.
For each frame, the external trigger signal controls the start and the end of the exposure time for each frame.
The exposure starts when the external trigger goes high and ends when the external trigger goes low. This mode
can be thought of as level-triggered.

Aviex PCCD-170170 specific modes

mx area detector set geometrical mode() (PCCD-170170)
In this mode, the first frame and first gap are taken for the specified exposure and gap times. For each subsequent
frame, the exposure time and gap times are multiplied by another factor of the exposure and gap multipliers.



2.6. ACTIONS 37

mx area detector set streak camera mode() (PCCD-170170)
In this mode, the detector repeatedly reads in a small number of lines from the center of the bottom half of the
detector. These lines are concatenated into one large image frame, which can have a much larger number of
rows than a normal image frame.

mx area detector set subimage mode() (PCCD-170170)
In this mode, the detector reads out a sequence of subimages that are read from the center of the bottom half
of the detector. The subimages are concatenated into on image frame, which can be no larger than a single full
frame image.

2.6 Actions
The functions in this section command the area detector to start a data acquisition sequence and then report on the
status of this sequence.

mx area detector arm()
Tells the area detector to perform all the preliminary setup required to be ready to start an image sequence. If
external trigger is enabled, the first trigger after the arm finishes will start the imaging sequence.

mx area detector trigger()
Sends a software trigger to the area detector that tells it to start the imaging sequence.

mx area detector start()
This is a utility function that invokes mx area detector arm() followed by mx area detector trigger().

mx area detector stop()
This tells the area detector to stop an in-progress imaging sequence after the current frame completes.

mx area detector abort()
This tells the area detector to stop an in-progress imaging sequence as quickly as possible. In general, the frame
being taken at the time of the abort will be lost.

mx area detector get last frame number()
Reports the frame number of the most recently acquired frame. Before the first frame (frame 0) is taken, it will
return the value -1.

mx area detector get total num frames()
Reports the total number of frames acquired since the MX server program started.

mx area detector get status()
Returns a status flags value that describes the current state of the area detector. The long integer returned is a
bitmap in which each bit stands for a different status flag.

mx area detector get extended status()
This function returns the last frame number, the total number of frames, and the status flags in one call.

mx area detector is busy()
This function reads out the status flag from the detector and returns TRUE if any of the following bits are
set: MXSF AD ACQUISITION IN PROGRESS (0x1), MXSF AD CORRECTION IN PROGRESS (0x2),
and MXSF AD CORRECTION MEASUREMENT IN PROGRESS (0x4).



38 CHAPTER 2. USING THE MX AREA DETECTOR API

2.7 Frame Transfer
mx area detector setup frame()

This function creates a local MX IMAGE FRAME structure that can be used to hold a frame from the area
detector.

mx area detector readout frame()
This function tells the area detector to readout the contents of the specified frame number into the image buffer
of the MX server.

mx area detector transfer frame()
This function transfers the contents of one of the frame buffers described in Section 3.1.2 into the frame buffer
that was configured by mx area detector setup frame().

mx area detector load frame()
This function loads an image frame from the specified file into one of the frame buffers described in Sec-
tion 3.1.2. The filename specified must refer to a file found on the detector computer itself and must use the
image format configured for this area detector.

mx area detector save frame()
This function saves one of the frame buffers described in Section 3.1.2 to the specified file. The filename
specified must refer to a file found on the detector computer itself and will use the image format configured for
this area detector.

mx area detector copy frame()
This function copies an image frame from one of the frame buffers described in Section 3.1.2 to another of the
frame buffers.

Utility Functions

mx area detector get frame()
This is a utility function that reads out, corrects, and then transfers the contents of the specified image frame
number to the specified MX IMAGE FRAME structure. This function invokes the following functions
in order: mx area detector setup frame() followed by mx area detector readout frame() followed by
mx area detector correct frame() and finishing with mx area detector transfer frame()

mx area detector get sequence()
This is a utility function that fills in the frames in an MX IMAGE SEQUENCE structure by repeated calls to
mx area detector get frame().

2.8 Frame Correction
A hexadecimal correction flags field is used for determining which corrections are made. The bits in the correction
flags use the bit definitions made in Section 3.1.2.

mx area detector get correction flags()
Gets the current correction flag settings.



2.9. REGION OF INTEREST (ROI) FUNCTIONS 39

mx area detector set correction flags()
Sets the correction flags.

mx area detector correct frame()
This function causes all of the requested corrections to be performed on the frame in the image frame buffer of
the detector computer. Normal MX client programs should use this function rather than the following function.

mx area detector frame correction()
This function supplies pointers to the image frames to be used for image corrections. Since these frames
are normally located on the detector computer, this function should normally only be invoked on the detector
computer.

mx area detector measure correction frame()
This function can be used to create new dark current and flood field frames.

mx area detector measure dark current frame()
This is a macro wrapper for mx area detector measure correction frame() that is only used for dark current
measurements.

mx area detector measure flood field frame()
This is a macro wrapper for mx area detector measure correction frame() that is only used for flood field
measurements.

2.9 Region of Interest (ROI) Functions
mx area detector get roi()

Reports the X and Y dimensions in binned coordinates for the requested software ROI number.

mx area detector set roi()
Sets the X and Y dimensions in binned coordinates for the requested software ROI number.

mx area detector get roi frame()
This function reads out the contents of the requested software ROI from the original MX IMAGE FRAME
structure and transfers it to another MX IMAGE FRAME structure that is only large enough to hold the ROI
contents.

2.10 Image Functions
MX comes with a number of functions that operate directly on MX IMAGE FRAME structures and which do not
involve the area detector at all. These functions are defined in the header file $MXDIR/include/mx image.h.

mx image alloc()
This function creates a new MX IMAGE FRAME structure. You must specify the image type, the frame
size, the image format, the pixel order, the bytes per pixel, the header length, and the image length. If you
want an MX IMAGE FRAME structure that is compatible with your area detector, you are better off letting
mx area detector setup frame() or mx area detector get frame() do it for you, instead of invoking this function
directly.



40 CHAPTER 2. USING THE MX AREA DETECTOR API

mx image free()
This function frees all of the memory in use by an existing MX IMAGE FRAME structure.

mx image copy frame()
This copies the contents of one MX IMAGE FRAME to another.

mx image get exposure time()
This returns the exposure time in seconds of the exposure that was used to take the original image data. This
information is generally used to perform scaled dark current corrections. If the image has been read from an
image file whose header does not contain the exposure time, the exposure time is set to 1.

mx image get average intensity()
This returns the average of the pixel values in the specified image frame.

mx image get image data pointer()
This returns a pointer to a 1-dimensional buffer containing the image data inside an MX IMAGE FRAME
structure. If the image size or format of a new frame read into an existing MX IMAGE FRAME structure
by mx area detector get frame or mx area detector transfer frame is different than that of the image data that
was already in the structure, then MX may replace the existing image data buffer with a new one. If you need a
pointer to the 1-dimensional image data buffer, it is safest to reinvoke mx image get image data pointer() after
each new frame is read into the MX IMAGE FRAME structure.

mx image copy 1d pixel array()
This function copies the pixel data from an MX IMAGE FRAME structure to a 1-dimensional buffer supplied
by the caller.

mx image read file()
This function reads the requested image file in the requested format into the supplied MX IMAGE FRAME
structure. The specified filename must exist on the computer that is invoking this function.

mx image write file()
This function writes the contents of the supplied MX IMAGE FRAME structure in the requested format into
the requested image file. The file created will be on the computer that is invoking this function.

mx image get format type from name()

mx image get format name from type()

These are two utility functions that convert back and forth between ASCII names for the formats such as
GREY16 and the corresponding numerical format values.

2.11 Example Programs

Having shown an overview of the API used to control area detectors with MX, we now show some complete programs
that use the API.



2.11. EXAMPLE PROGRAMS 41

2.11.1 Acquiring and Saving Images - example2.c
This program takes a sequence of image frames from an area detector. The program demonstrates both saving them
to a file on the detector computer and transferring them to the client and then saving them on the client computer.

/*
* Name: example2.c

*
* Purpose: This program demonstrates running a multiple frame sequence.

* The program has one command line argument ’use_client_disk’

* which if set to a non-zero value will make the client program

* transfer the frames to its local disk and save them there.

*
* Author: William Lavender

*
*--------------------------------------------------------------------------

*
* Copyright 2006 Illinois Institute of Technology

*
* See the file "LICENSE" for information on usage and redistribution

* of this file, and for a DISCLAIMER OF ALL WARRANTIES.

*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_image.h"
#include "mx_area_detector.h"

static mx_status_type
save_frame_on_detector_computer( MX_RECORD *ad_record,

long last_frame_number );

static mx_status_type
save_frame_on_client_computer( MX_RECORD *ad_record,

MX_IMAGE_FRAME **image_frame,
long last_frame_number );

int
main( int argc, char *argv[] )
{

MX_RECORD *mx_database, *ad_record;
MX_IMAGE_FRAME *image_frame;
char mx_database_name[] = "./mx_client.dat";



42 CHAPTER 2. USING THE MX AREA DETECTOR API

char area_detector_name[] = "ad";
double exposure_time, gap_time;
long num_frames, last_frame_number, total_num_frames;
long current_frame_number;
unsigned long ad_status_flags;
int use_client_disk;
mx_status_type mx_status;

if ( argc != 2 ) {
fprintf(stderr, "Usage: %s ’use_client_disk_flag’\n", argv[0]);
exit(1);

}

image_frame = NULL;

/* Do we save the frames on the client computer or do we save

* the frames on the detector computer?

*/

use_client_disk = atoi( argv[1] );

/* Initialize the MX database. */

mx_status = mx_setup_database( &mx_database, mx_database_name );

if ( mx_status.code != MXE_SUCCESS ) {
fprintf( stderr,

"Did not successfully initialize MX database ’%s’.\n",
mx_database_name );

exit(1);
}

/* Find the area detector record in the database. */

ad_record = mx_get_record( mx_database, area_detector_name );

if ( ad_record == NULL ) {
fprintf( stderr,
"Did not find area detector record ’%s’ in MX database ’%s’.\n",

area_detector_name, mx_database_name );
exit(1);

}

/* Configure a sequence for the area detector that tells it to

* take 10 image frames with an exposure time of 1.0 second

* for each frame and a gap of 0.5 seconds between the frames.



2.11. EXAMPLE PROGRAMS 43

*/

num_frames = 10;
exposure_time = 1.0;
gap_time = 0.5;

fprintf( stderr,
"Taking a multiframe sequence of %ld frames using area detector ’%s’ with "
"an exposure time of %g seconds and a gap time of %g seconds.\n",

num_frames, ad_record->name,
exposure_time, gap_time );

mx_status = mx_area_detector_set_multiframe_mode( ad_record,
num_frames,
exposure_time,
gap_time );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* Arm the detector. */

fprintf( stderr, "Arming the detector.\n" );

mx_status = mx_area_detector_arm( ad_record );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* We assume for this example that the area detector is configured

* for internal trigger mode. If so, then we will need to explicitly

* trigger the data acquisition sequence. If we were using an

* external trigger, then this step would not be necessary.

*/

fprintf( stderr, "Triggering the detector.\n" );

mx_status = mx_area_detector_trigger( ad_record );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* Monitor the progress of the data acquisition sequence. */

current_frame_number = -1;



44 CHAPTER 2. USING THE MX AREA DETECTOR API

while (1) {
/* Ask for the status of the detector. */

mx_status = mx_area_detector_get_extended_status( ad_record,
&last_frame_number,
&total_num_frames,
&ad_status_flags );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* If the reported last frame number has changed, then there

* are one or more frames available to be read out.

*/

if ( last_frame_number != current_frame_number ) {

current_frame_number++;

if ( use_client_disk ) {
mx_status = save_frame_on_client_computer(

ad_record, &image_frame,
current_frame_number );

} else {
mx_status = save_frame_on_detector_computer(

ad_record, current_frame_number );
}

if ( mx_status.code != MXE_SUCCESS )
exit(1);

}

/* If the status flags say that the area detector is

* no longer busy, see if there are any frames left

* to read out.

*/

if ( ( ad_status_flags & MXSF_AD_IS_BUSY ) == 0 ) {

if ( current_frame_number >= last_frame_number ) {

/* If not, then exit. */

fprintf( stderr,
"The data acquisition sequence has completed.\n" );
fprintf( stderr, "Exiting now...\n" );



2.11. EXAMPLE PROGRAMS 45

exit(0);
}

}

/* Sleep for a millisecond so that we do not use up

* all of the CPU time on the computer.

*/

mx_msleep(1);
}

fprintf( stderr, "Should never get here.\n" );

exit(1);
}

static mx_status_type
save_frame_on_detector_computer( MX_RECORD *ad_record,

long last_frame_number )
{

char savefile_name[80];
mx_status_type mx_status;

fprintf( stderr,
"Saving area detector ’%s’ frame number %ld on the detector computer.\n",

ad_record->name, last_frame_number );

/* Tell the detector computer to readout the requested frame from

* the area detector hardware into the detector computer’s primary

* image frame buffer.

*/

mx_status = mx_area_detector_readout_frame( ad_record,
last_frame_number );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

/* Tell the detector computer to correct the frame that was

* just read out.

*/

mx_status = mx_area_detector_correct_frame( ad_record );

if ( mx_status.code != MXE_SUCCESS )



46 CHAPTER 2. USING THE MX AREA DETECTOR API

return mx_status;

/* Tell the detector computer to save the frame on its own

* hard disk.

*
* If we specify a full pathname, the MX server will save

* the file at the requested location.

*
* If we give the server only the filename, it will save the

* file in the default save file directory on the detector

* computer.

*
* If we give it an empty or NULL filename, the MX server

* will choose the next filename on its own.

*/

snprintf( savefile_name, sizeof(savefile_name),
"example2_%04ld.pnm", last_frame_number );

mx_status = mx_area_detector_save_frame( ad_record,
MXFT_AD_IMAGE_FRAME,
savefile_name );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

fprintf(stderr, "Successfully wrote image file ’%s’.\n", savefile_name);

return MX_SUCCESSFUL_RESULT;
}

static mx_status_type
save_frame_on_client_computer( MX_RECORD *ad_record,

MX_IMAGE_FRAME **image_frame,
long last_frame_number )

{
MX_IMAGE_FRAME *local_image_frame;
char savefile_name[80];
size_t image_length;
void *image_data_pointer;
uint16_t *uint16_array;
int i;
mx_status_type mx_status;

fprintf( stderr,
"Saving area detector ’%s’ frame number %ld on the client computer.\n",



2.11. EXAMPLE PROGRAMS 47

ad_record->name, last_frame_number );

/* The first time that mx_area_detector_setup_frame() is invoked,

* it will allocate memory for the image frame data structures.

* On subsequent calls, it checks to see if the already allocated

* image frame data structures are too small to hold the new

* image frame. If they are already big enough, the image frame

* is left alone.

*
* In addition, mx_area_detector_setup_frame() saves a pointer

* to the image frame in the area detector record data structure.

* Later in this routine, mx_area_detector_transfer_frame() will

* read the image sent by the detector computer into that frame.

*/

mx_status = mx_area_detector_setup_frame( ad_record, image_frame );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

/* Tell the detector computer to readout the requested frame from

* the area detector hardware into the detector computer’s primary

* image frame buffer.

*/

mx_status = mx_area_detector_readout_frame( ad_record,
last_frame_number );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

/* Tell the detector computer to correct the frame that was

* just read out.

*/

mx_status = mx_area_detector_correct_frame( ad_record );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

/* Tell the detector computer to send the primary image frame

* across the network to the client computer. If this call

* completes successfully, the image will be accessible via

* the *image_frame pointer.

*/



48 CHAPTER 2. USING THE MX AREA DETECTOR API

local_image_frame = *image_frame;

mx_status = mx_area_detector_transfer_frame( ad_record,
MXFT_AD_IMAGE_FRAME,
local_image_frame );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

/* Display the first 10 pixels in the frame. You should always

* reinvoke mx_image_get_image_data_pointer() after each time

* you read in a frame.

*/

mx_status = mx_image_get_image_data_pointer( local_image_frame,
&image_length,
&image_data_pointer );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

fprintf( stderr, "The transferred image is %lu bytes long.\n",
(unsigned long) image_length );

uint16_array = image_data_pointer;

for ( i = 0; i < 10; i++ ) {
fprintf( stderr, "image[%d] = %hu\n",

i, (unsigned short) uint16_array[i] );
}

/* We finish by writing the local image to a disk file in PNM format.

*
* FIXME: For the real release, we need to convert this to SMV format.

*/

snprintf( savefile_name, sizeof(savefile_name),
"example2_%04ld.pnm", last_frame_number );

mx_status = mx_image_write_file( local_image_frame,
MXT_IMAGE_FILE_PNM,
savefile_name );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;



2.11. EXAMPLE PROGRAMS 49

fprintf(stderr, "Successfully wrote image file ’%s’.\n", savefile_name);

return MX_SUCCESSFUL_RESULT;
}

2.11.2 Measuring Detector Dark Currents - example3.c

/*
* Name: example3.c

*
* Purpose: This program shows how to create a new dark current image frame

* for an area detector.

*
* Author: William Lavender

*
*--------------------------------------------------------------------------

*
* Copyright 2006 Illinois Institute of Technology

*
* See the file "LICENSE" for information on usage and redistribution

* of this file, and for a DISCLAIMER OF ALL WARRANTIES.

*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_image.h"
#include "mx_area_detector.h"

int
main( int argc, char *argv[] )
{

MX_RECORD *mx_database, *ad_record;
MX_IMAGE_FRAME *image_frame;
char mx_database_name[] = "./mx_client.dat";
char area_detector_name[] = "ad";
double exposure_time;
long num_exposures;
char *savefile_name;
mx_bool_type busy;
mx_status_type mx_status;



50 CHAPTER 2. USING THE MX AREA DETECTOR API

if ( argc != 4 ) {
fprintf(stderr,
"Usage: %s ’exposure time’ ’num exposures’ ’savefile name’\n",

argv[0]);
exit(1);

}

image_frame = NULL;

exposure_time = atof( argv[1] );
num_exposures = atoi( argv[2] );
savefile_name = argv[3];

/* Initialize the MX database. */

mx_status = mx_setup_database( &mx_database, mx_database_name );

if ( mx_status.code != MXE_SUCCESS ) {
fprintf( stderr,

"Did not successfully initialize MX database ’%s’.\n",
mx_database_name );

exit(1);
}

/* Find the area detector record in the database. */

ad_record = mx_get_record( mx_database, area_detector_name );

if ( ad_record == NULL ) {
fprintf( stderr,
"Did not find area detector record ’%s’ in MX database ’%s’.\n",

area_detector_name, mx_database_name );
exit(1);

}

/* Tell the area detector to start acquiring images with which

* to make a dark current correction frame.

*
* There should be no photons hitting the detector while this

* measurement is in progress.

*/

if ( num_exposures == 1 ) {
fprintf( stderr,
"Starting the dark current measurement using "
"1 exposure of %g seconds.\n",



2.11. EXAMPLE PROGRAMS 51

exposure_time );
} else {

fprintf( stderr,
"Starting the dark current measurement using "
"%ld exposures of %g seconds each.\n",

num_exposures, exposure_time );
}

mx_status = mx_area_detector_measure_dark_current_frame( ad_record,
exposure_time, num_exposures );

if ( mx_status.code != MXE_SUCCESS ) {
fprintf( stderr,
"Unable to start the dark current measurement.\n" );
exit(1);

}

/* Wait for the dark current measurement to complete. */

while (1) {
/* See if the measurement is still in progress. */

mx_status = mx_area_detector_is_busy( ad_record, &busy );

if ( mx_status.code != MXE_SUCCESS ) {
fprintf( stderr,

"An attempt to check the status of the detector failed.\n");
exit(1);

}

if ( busy == FALSE ) {
/* The measurement is complete, so we can now

* break out of the while() loop.

*/

break;
}

/* Sleep for a millisecond so that we do not use up

* all of the CPU time on the computer.

*/

mx_msleep(1);
}

fprintf( stderr, "The dark current measurement is complete.\n" );



52 CHAPTER 2. USING THE MX AREA DETECTOR API

/* The new dark current frame will already be in the correct

* image buffer on the detector computer for the purpose of

* automatic image correction. However, we will also save a

* copy of the new dark current frame to disk. Please note

* that the filename for the save file refers to the disk

* on the detector computer.

*/

mx_status = mx_area_detector_save_frame( ad_record,
MXFT_AD_DARK_CURRENT_FRAME,
savefile_name );

if ( mx_status.code != MXE_SUCCESS ) {
fprintf( stderr,
"The attempt to save the new dark current frame\n"
"to the file ’%s’ on the detector computer failed.\n",

savefile_name );
exit(1);

}

fprintf( stderr,
"The dark current frame was successfully saved to the file ’%s’ "
"on the detector computer.\n",

savefile_name );

fprintf( stderr, "Program complete.\n" );

exit(0);
}

2.11.3 Reading Out a Region Of Interest (ROI) - example4.c

/*
* Name: example4.c

*
* Purpose: This program acquires a single image frame, reads out a region

* of interest and then writes the ROI to a disk file on the client.

*
* Note: If programmed in this manner, only the pixels contained within

* the ROI will be transferred across the network.

*
* Author: William Lavender

*
*--------------------------------------------------------------------------



2.11. EXAMPLE PROGRAMS 53

*
* Copyright 2006 Illinois Institute of Technology

*
* See the file "LICENSE" for information on usage and redistribution

* of this file, and for a DISCLAIMER OF ALL WARRANTIES.

*
*/

#include <stdio.h>
#include <stdlib.h>

#include "mx_util.h"
#include "mx_record.h"
#include "mx_image.h"
#include "mx_area_detector.h"

int
main( int argc, char *argv[] )
{

MX_RECORD *mx_database, *ad_record;
MX_IMAGE_FRAME *roi_frame;
void *roi_data_pointer;
uint16_t *uint16_array;
char mx_database_name[] = "./mx_client.dat";
char area_detector_name[] = "ad";
unsigned long i, roi_number, roi[4];
size_t roi_length;
double exposure_time;
char roi_filename[MXU_FILENAME_LENGTH+1];
mx_bool_type busy;
mx_status_type mx_status;

/* Initialize the MX database. */

mx_status = mx_setup_database( &mx_database, mx_database_name );

if ( mx_status.code != MXE_SUCCESS ) {
fprintf( stderr,

"Did not successfully initialize MX database ’%s’.\n",
mx_database_name );

exit(1);
}

/* Find the area detector record in the database. */

ad_record = mx_get_record( mx_database, area_detector_name );



54 CHAPTER 2. USING THE MX AREA DETECTOR API

if ( ad_record == NULL ) {
fprintf( stderr,
"Did not find area detector record ’%s’ in MX database ’%s’.\n",

area_detector_name, mx_database_name );
exit(1);

}

/* Configure the detector to acquire a single frame. */

exposure_time = 0.5; /* in seconds */

fprintf( stderr,
"Taking a single frame exposure of %g seconds.\n", exposure_time );

mx_status = mx_area_detector_set_one_shot_mode( ad_record,
exposure_time );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* Arm the detector. */

fprintf( stderr, "Arming the detector.\n" );

mx_status = mx_area_detector_arm( ad_record );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* We assume for this example that the area detector is configured

* for internal trigger mode. If so, then we will need to explicitly

* trigger the data acquisition sequence. If we were using an

* external trigger, then this step would not be necessary.

*/

fprintf( stderr, "Triggering the detector.\n" );

mx_status = mx_area_detector_trigger( ad_record );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* Monitor the progress of the data acquisition sequence. */

while (1) {



2.11. EXAMPLE PROGRAMS 55

/* Check to see if the detector is still acquiring a frame. */

mx_status = mx_area_detector_is_busy( ad_record, &busy );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

if ( busy == FALSE ) {

/* If the area detector has finished the measurement,

* then break out of the while() loop.

*/

break;
}

/* Sleep for a millisecond so that we do not use up

* all of the CPU time on the computer.

*/

mx_msleep(1);
}

fprintf( stderr, "Exposure complete.\nReading out frame 0.\n" );

/* Tell the detector computer to readout the requested frame from

* the area detector hardware into the detector computer’s primary

* image frame buffer.

*/

mx_status = mx_area_detector_readout_frame( ad_record, 0 );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* Tell the detector computer to correct the frame that was

* just read out.

*/

fprintf( stderr, "Correcting the frame.\n" );

mx_status = mx_area_detector_correct_frame( ad_record );

if ( mx_status.code != MXE_SUCCESS )
exit(1);



56 CHAPTER 2. USING THE MX AREA DETECTOR API

/* Define the boundaries of region of interest 5. This can be done

* either before or after acquiring the image frame.

*/

roi_number = 5;

/* The following limits are specified in binned coordinates. */

roi[0] = 1000; /* X minimum */
roi[1] = 2000; /* X maximum */
roi[2] = 250; /* Y minimum */
roi[3] = 750; /* Y maximum */

fprintf( stderr,
"Setting ROI %lu to Xmin = %lu, Xmax = %lu, Ymin = %lu, Ymax = %lu\n",

roi_number, roi[0], roi[1], roi[2], roi[3] );

mx_status = mx_area_detector_set_roi( ad_record, roi_number, roi );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* Make sure that mx_area_detector_get_roi_frame() allocates

* a new frame by setting roi_frame to NULL.

*/

roi_frame = NULL;

/* Transfer the contents of the detector ROI to the client ROI frame. */

fprintf( stderr, "Reading out ROI %lu\n", roi_number );

mx_status = mx_area_detector_get_roi_frame( ad_record, NULL,
roi_number, &roi_frame );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

/* Display the first 10 pixels in the ROI frame. */

mx_status = mx_image_get_image_data_pointer( roi_frame,
&roi_length,
&roi_data_pointer );

if ( mx_status.code != MXE_SUCCESS )
exit(1);



2.11. EXAMPLE PROGRAMS 57

fprintf( stderr, "The transferred ROI frame is %lu bytes long.\n",
(unsigned long) roi_length );

uint16_array = roi_data_pointer;

for ( i = 0; i < 10; i++ ) {
fprintf( stderr, "image[%lu] = %hu\n",

i, (unsigned short) uint16_array[i] );
}

/* We finish by writing the ROI frame to a disk file in PNM format.

*
* FIXME: For the real release, we need to convert this to SMV format.

*/

strlcpy( roi_filename, "roifile.pgm", MXU_FILENAME_LENGTH );

mx_status = mx_image_write_file( roi_frame,
MXT_IMAGE_FILE_PNM,
roi_filename );

if ( mx_status.code != MXE_SUCCESS )
exit(1);

fprintf(stderr, "Successfully wrote ROI file ’%s’.\n", roi_filename );

exit(0);
}



58 CHAPTER 2. USING THE MX AREA DETECTOR API



Chapter 3

Area Detector API Reference

3.1 Area Detector Definitions

3.1.1 Area Detector Status Word

The current status of the area detector can be determined by calling either the mx area detector get status() function
or the mx area detector get extended status() function, both of which return a 32-bit status word. Currently the
following bits are defined:

MXSF AD ACQUISITION IN PROGRESS (0x1)
This status bit is set if the detector is currently recording a sequence of image frames. For most sequence types,
the Acquisition In Progress bit will turn off after the last frame has been acquired. However, for Continuous
mode, the Acquisition In Progress bit will continue to be set until the imaging sequence is explicitly stopped or
aborted.

MXSF AD CORRECTION IN PROGRESS (0x2)
This bit is set if the frame in the primary frame buffer is currently undergoing image correction. This bit
refers to what are sometimes called online corrections. Warning: This bit is not yet implemented. It will be
implemented when geometrical corrections have been added to the area detector software.

MXSF AD CORRECTION MEASUREMENT IN PROGRESS (0x4)
This bit is set if a dark current or flood field correction frame imaging sequence is currently in progress. This
bit will only be set if the mxserver command line includes the ‘-c’ flag which turns on event callback mode.

3.1.2 Frame Buffer Types

The MX area detector record makes provision for several different frame buffers that are used both for image transfer
and image correction operations. These buffers are normally identified using individual bits in a hexadecimal bitmask.
The currently defined frame buffers are

MXFT AD IMAGE FRAME (0x0)
This is the primary frame buffer that image frames are initially read into from the area detector hardware.

59



60 CHAPTER 3. AREA DETECTOR API REFERENCE

MXFT AD MASK FRAME (0x1)
The mask frame is optionally used to ignore masked off pixels during the flood field average intensity calcula-
tion.

MXFT AD BIAS FRAME (0x2)
CCD detectors typically add a bias offset to pixels returned by the area detector hardware to raise the values
above the noise floor and to reduce the likelihood that dark current subtraction will produce a negative value.
The bias frame is optionally used to subtract the bias from the frame during image correction. The bias is
exposure time independent.

MXFT AD DARK CURRENT FRAME (0x4)
The dark current frame is optionally used to subtract an exposure time dependent dark current from the image
frame. Normally, the dark current frame should be taken with no photons hitting the imaging surface. De-
pending on the setting of mx area detector set use scaled dark current flag(), the dark current frame will
either be scaled to match the image frame exposure time, or else the dark current frame will be subtracted as is
without any scaling.

MXFT AD FLOOD FIELD FRAME (0x8)
The flood field frame is optionally used to perform a flood field (also known as flat field) correction to the image
frame. Generally, different pixels in an area detector will return slightly different signals for the same number
of incident photons. This can be thought of as a variation in gain for different pixels. The flood field frame,
if configured, is used to correct for this variation in gain. Ideally, the flood field frame should be taken with a
uniform photon intensity across the entire imaging surface.

Internally, there is an additional image frame buffer, namely the ROI (Region of Interest) frame buffer. In general, this
buffer is a different size than the other buffers above and it does not take part in image correction or normal image and
file I/O. Instead, there are special ROI-specific functions that operate on the ROI frame buffer. In addition, although
the MX area detector class supports multiple ROIs, the ROI frame buffer itself only contains the contents of one ROI
at a time.

3.2 mx area detector abort
NAME

mx area detector abort - immediately stop all area detector activity

SYNOPSIS
mx status type mx area detector abort ( MX RECORD *record );

DESCRIPTION
This function tells the area detector to abort all current operations such as image acquisition as quickly as
possible. If an imaging sequence is currently in progress, the current image frame may be lost.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector stop()



3.3. MX AREA DETECTOR ARM 61

3.3 mx area detector arm
NAME

mx area detector arm - prepare the area detector for image acquisition

SYNOPSIS
mx status type mx area detector arm ( MX RECORD *record );

DESCRIPTION
This function tells the area detector to perform all operations needed to get ready to be triggered for an imaging
sequence. If the area detector has been set by mx area detector set trigger mode() to a triggering mode that
requires an external trigger, the imaging sequence will start when the first external trigger pulse arrives.

If the area detector is in an internal triggering mode, then the program must invoke mx area detector trigger()
to start the imaging sequence.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set trigger mode(), mx area detector trigger()

3.4 mx area detector copy frame
NAME

mx area detector copy frame - copy a frame on the area detector computer

SYNOPSIS
mx status type mx area detector copy frame ( MX RECORD *record,

long source frame type,
long destination frame type);

DESCRIPTION
This function copies a frame on the area detector control computer from one of the predefined frame buffers to
another of the predefined frame buffers. The arguments source frame type and destination frame type are long
integers that refer to the buffers. The list of available frame buffers can be found in Section 3.1.2

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

3.5 mx area detector correct frame
NAME

mx area detector correct frame - tell the detector computer to perform image correction

SYNOPSIS
mx status type mx area detector correct frame ( MX RECORD *record );



62 CHAPTER 3. AREA DETECTOR API REFERENCE

DESCRIPTION
This function tells the detector computer to perform all image corrections that are currently enabled. At present,
the types of corrections available are mask correction, bias correction, dark current correction, and flood field
correction.

There are two things that must be true for a given correction to be performed:

• The correction frame must have been loaded into the appropriate buffer on the detector computer. This
can either be done automatically at program startup time or manually by a later call to mx load frame().

• The bit in the correction flags bitmask for this correction must have been set either at program startup
time or by a call to mx set correction flags().

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector load frame(), mx area detector set correction flags()

3.6 mx area detector get binsize
NAME

mx area detector get binsize - reports the current x and y image binning

SYNOPSIS
mx status type mx area detector get binsize ( MX RECORD *record,

long *x binsize,
long *y binsize );

DESCRIPTION
This function reports the scale factors for image frame binning in the detector. For example, if the x binsize is
2, then the values of pairs of adjacent pixels in the X direction will added together and returned as one pixel
value. If both the x and y binsizes are set to 2, then a two by two square of four pixels will be added together
and returned as one pixel. If the detector is in unbinned mode, the binsizes reported will be 1.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set binsize()

3.7 mx area detector get bits per pixel
NAME

mx area detector get bits per pixel - reports the number of significant bits in a single image pixel

SYNOPSIS
mx status type mx area detector get bits per pixel ( MX RECORD *record,

long *bits per pixel );



3.8. MX AREA DETECTOR GET BYTES PER FRAME 63

DESCRIPTION
This function reports the number of significant bits in a single image pixel for the current image format. Typi-
cally, this number reflects the resolution of the ADCs in the detector.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

3.8 mx area detector get bytes per frame
NAME

mx area detector get bytes per frame - reports the number of bytes in a single image frame

SYNOPSIS
mx status type mx area detector get bytes per frame ( MX RECORD *record,

long *bytes per frame );

DESCRIPTION
This function reports the number of bytes in a single image frame for the current image format, framesize, and
binning. This size does not include the size of the image header (if present).

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

3.9 mx area detector get bytes per pixel
NAME

mx area detector get bytes per pixel - reports the number of bytes per pixel in the current image format

SYNOPSIS
mx status type mx area detector get bytes per pixel ( MX RECORD *record,

double *bytes per pixel );

DESCRIPTION
This function reports the number of bytes in a single image pixel for the current image format. Bytes per pixel
is returned as a double due to the fact that there exist image formats for which the number of bytes per pixel is
not an integer.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

3.10 mx area detector get correction flags
NAME

mx area detector get correction flags - reports a bitmask listing the currently enabled image corrections

SYNOPSIS
mx status type mx area detector get correction flags ( MX RECORD *record,

unsigned long *correction flags );



64 CHAPTER 3. AREA DETECTOR API REFERENCE

DESCRIPTION
This function returns a bitmask that describes the set of image corrections that are currently enabled. A given
correction is enabled if the bit for that correction in the bitmask has a value of 1. A description of the bitmask
for the available corrections can be found in the description for the mx area detector copy frame() function.
Please note that the MXFT AD IMAGE FRAME (0x1) bit is ignored in this context.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector copy frame(), mx area detector set correction flags()

3.11 mx area detector get detector readout time
NAME

mx area detector get detector readout time - reports the detector readout time for the current mode.

SYNOPSIS
mx status type mx area detector get detector readout time ( MX RECORD *record,

double *detector readout time );

DESCRIPTION
This function reports the amount of time in seconds that is required to readout all of the pixels in a detector
image frame in the current detector mode.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

3.12 mx area detector get extended status
NAME

mx area detector get extended status - reports the last frame number, the total number of frames, and the
status flags for an area detector.

SYNOPSIS
mx status type mx area detector get extended status ( MX RECORD *record,

long *last frame number,
long *total num frames,
unsigned long *status flags );

DESCRIPTION
This function returns the last area detector frame number just like mx area detector get last frame number(),
the total number of frames acquired since program start just like mx area detector get total num frames(),
and the area detector status flags just like mx area detector get status(). See the descriptions of these three
functions for a more detailed description of what they return.

If the application program is polling for these values across an MX network connection, then this function will
be more efficient than three separate calls to the other three functions, since only one network transaction will
take place.



3.13. MX AREA DETECTOR GET FRAME 65

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get last frame number(), mx area detector get total num frames(),
mx area detector get status()

3.13 mx area detector get frame
NAME

mx area detector get frame - returns the requested image frame

SYNOPSIS
mx status type mx area detector get frame ( MX RECORD *record,

long frame number,
MX IMAGE FRAME **frame );

DESCRIPTION
This is a utility function that returns an MX IMAGE FRAME structure that contains the image corresponding
to the requested frame number. If frame number has the value -1, then the most recently acquired frame will
be returned. This function consolidates a sequence of calls to the functions mx area detector setup frame(),
mx area detector readout frame(), mx area detector correct frame(), and
mx area detector transfer frame() into one call.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector setup frame(), mx area detector readout frame(), mx area detector correct frame(),
mx area detector transfer frame()

3.14 mx area detector get framesize
NAME

mx area detector get framesize - reports the current x and y image frame size

SYNOPSIS
mx status type mx area detector get framesize ( MX RECORD *record,

long *x framesize,
long *y framesize );

DESCRIPTION
This function reports the current resolution of image frames in the area detector taking binning into account. If
currently the maximum frame size is 4096 by 4096 with 2 by 2 binning, then mx area detector get framesize()
will report a frame size of 2048 by 2048. If the detector is in unbinned mode, the frame size reported will be
the same as that reported by mx area detector get maximum framesize().

RETURN VALUE
On success, the status code MXE SUCCESS is returned.



66 CHAPTER 3. AREA DETECTOR API REFERENCE

SEE ALSO
mx area detector get binsize(), mx area detector get maximum framesize()
mx area detector set framesize()

3.15 mx area detector get image format
NAME

mx area detector get image format - reports the current image format

SYNOPSIS
mx status type mx area detector get image format ( MX RECORD *record,

long *image format );

DESCRIPTION
This function returns the detector image format as a numerical value. The list of supported formats can be
found in Section 4.1.1.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set image format()

3.16 mx area detector get last frame number
NAME

mx area detector get last frame number - reports the most recently acquired frame number

SYNOPSIS
mx status type mx area detector get last frame number ( MX RECORD *record,

long *last frame number );

DESCRIPTION
This function reports the frame number for the most recently acquired image frame. It is also the highest frame
number for which a call to mx area detector readout frame() or mx area detector get frame() will return
valid data, if the current sequence is not a circular sequence. If the area detector has not yet finished taking the
first frame in a new sequence, the value reported for last frame number will be -1.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get extended status(), mx area detector get last frame number()

3.17 mx area detector get maximum frame number
NAME

mx area detector get maximum frame number - reports the maximum frame number that is currently pos-
sible



3.18. MX AREA DETECTOR GET MAXIMUM FRAMESIZE 67

SYNOPSIS
mx status type mx area detector get maximum frame number ( MX RECORD *record,

long *maximum frame number );

DESCRIPTION
This function reports the maximum allowed frame number for the current configuration of the area detector. In
other words, mx area detector get last frame number() will never return a value larger than the maximum
allowed frame number. Changing the detector framesize, binsize, or sequence parameters can change the value
returned by this function.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

3.18 mx area detector get maximum framesize
NAME

mx area detector get maximum framesize - reports the maximum possible x and y image frame size

SYNOPSIS
mx status type mx area detector get maximum framesize ( MX RECORD *record,

long *maximum x framesize,
long *maximum y framesize );

DESCRIPTION
This function reports the maximum possible image frame size for the area detector. If the area detector is
currently in unbinned mode (binsize = 1), mx area detector get framesize() will report the same value.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get binsize(), mx area detector get framesize()

3.19 mx area detector get register
NAME

mx area detector get register - returns the value of the requested detector register as a long integer

SYNOPSIS
mx status type mx area detector get register ( MX RECORD *record,

char *register name,
long *register value );

DESCRIPTION
This function returns the value of the requested detector register as a long integer. If the register value is not
representable as long integer, then the function returns an error.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.



68 CHAPTER 3. AREA DETECTOR API REFERENCE

SEE ALSO
mx area detector set register()

3.20 mx area detector get roi
NAME

mx area detector get roi - returns the boundaries of the requested region of interest

SYNOPSIS
mx status type mx area detector get roi ( MX RECORD *record,

unsigned long roi number,
unsigned long *roi );

DESCRIPTION
This function returns the boundaries of the region of interest (ROI) specified by roi number. The boundaries of
the ROI are expressed in binned coordinates. The data in the boundary rows and columns is considered to be
part of the ROI.

The roi array argument is an array of four unsigned longs with the boundaries stored in the order Xmin, Xmax,
Ymin and Ymax. Here is an example of using this function:

...
MX_RECORD *ad_record;
unsigned long roi_number;
unsigned long roi[4];
...
roi_number = 5;

mx_status = mx_area_detector_get_roi( ad_record, roi_number, roi );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

fprintf(stderr,
"ROI(%lu) = Xmin = %lu, Xmax = %lu, Ymin = %lu, Ymax = %lu\n",

roi_number, roi[0], roi[1], roi[2], roi[3] );
...

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set roi()

3.21 mx area detector get roi frame
NAME

mx area detector get roi frame - returns the requested ROI as an image frame



3.22. MX AREA DETECTOR GET SEQUENCE 69

SYNOPSIS
mx status type mx area detector get roi frame ( MX RECORD *record,

MX IMAGE FRAME *frame );
unsigned long roi number,
MX IMAGE FRAME **roi frame );

DESCRIPTION
This returns an MX IMAGE FRAME structure that contains the contents of the region of interest (ROI) corre-
sponding to the requested roi number.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get roi(), mx area detector set roi()

3.22 mx area detector get sequence
NAME

mx area detector get sequence - reads all image frame in a sequence

SYNOPSIS
mx status type mx area detector get sequence ( MX RECORD *record,

long num frames,
MX IMAGE SEQUENCE **sequence);

DESCRIPTION
Reads out all of the frames in an MX IMAGE SEQUENCE. The images are read out by a series of calls to
mx area detector get sequence().

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get frame()

3.23 mx area detector get sequence parameters
NAME

mx area detector get sequence parameters - reports the current imaging sequence type

SYNOPSIS
mx status type mx area detector get sequence parameters ( MX RECORD *record,

MX SEQUENCE PARAMETERS *sequence parameters );

DESCRIPTION
This function reports the imaging sequence parameters that are currently configured for the area detector in
an MX SEQUENCE PARAMETERS structure. The MX SEQUENCE PARAMETERS structure is defined
as follows:



70 CHAPTER 3. AREA DETECTOR API REFERENCE

typedef struct {
long sequence_type;
long num_parameters;
double parameter_array[MXU_MAX_SEQUENCE_PARAMETERS];

} MX_SEQUENCE_PARAMETERS;

The sequence type member specifies which type of sequence has been requested using the sequence type def-
initions near the top of the $MXDIR/include/mx image.h header file. The num parameters and the parame-
ter array members provide sequence type specific information for the sequence in question.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set sequence parameters()

3.24 mx area detector get sequence start delay
NAME

mx area detector get sequence start delay - reports the sequence start delay time.

SYNOPSIS
mx status type mx area detector get sequence start delay ( MX RECORD *record,

double *sequence start delay );

DESCRIPTION
For some area detectors, the detector can be configured to wait for a specified delay time before starting the
data acquisition sequence. This function reports the value of the delay time in seconds. Area detectors that do
not support this feature will return a delay time of 0.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get detector readout time(), mx area detector get total acquisition time(),
mx area detector get total sequence time(), mx area detector set sequence start delay()

3.25 mx area detector get status
NAME

mx area detector get status - gets the area detector status flags

SYNOPSIS
mx status type mx area detector get status ( MX RECORD *record,

unsigned long status flags );

DESCRIPTION
Returns a bitmap of status flags where the individual flag bits represent different aspects of the current status of
the area detector. The currently defined status flags are described in Section 3.1.1.



3.26. MX AREA DETECTOR GET TOTAL ACQUISITION TIME 71

At present, the only status flag defined is MXSF AD IS BUSY. It is anticipated that this will expand to include
status flags for internal software or hardware faults of the detector system.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get extended status()

3.26 mx area detector get total acquisition time
NAME

mx area detector get total acquisition time - reports the time required to acquire the image frames for the
current mode.

SYNOPSIS
mx status type mx area detector get total acquisition time ( MX RECORD *record,

double *total acquisition time );

DESCRIPTION
This function reports the amount of time in seconds that is required to acquire all of the image frames for the
current sequence. In general, it does not include detector readout times or the gap time between exposures.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get detector readout time(), mx area detector get sequence start delay(),
mx area detector get total sequence time()

3.27 mx area detector get total num frames
NAME

mx area detector get last frame number - reports the total number of image frame acquired.

SYNOPSIS
mx status type mx area detector get total num frames ( MX RECORD *record,

long *total num frames );

DESCRIPTION
This function reports the total number of image frames acquired since program startup time. If the area detector
has not yet finished taking the first frame in a new sequence, the value reported for total num frames will be 0.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get extended status(), mx area detector get last frame number()



72 CHAPTER 3. AREA DETECTOR API REFERENCE

3.28 mx area detector get total sequence time
NAME

mx area detector get total sequence time - reports the total sequence time for the current mode.

SYNOPSIS
mx status type mx area detector get total sequence time ( MX RECORD *record,

double *total sequence time );

DESCRIPTION
This function reports the amount of time in seconds that is required for the detector to run the currently config-
ured sequence.

Warning: The total sequence time reported does not include the correction time, the time required to transfer
the frames across the network, or the time required to write the frames to disk.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get detector readout time(), mx area detector get sequence start delay(),
mx area detector get total acquisition time()

3.29 mx area detector get trigger mode
NAME

mx area detector set trigger mode - reports the internal/external trigger mode for the detector

SYNOPSIS
mx status type mx area detector get trigger mode ( MX RECORD *record,

long *trigger mode );

DESCRIPTION
This function is used to report whether or not the area detector is in internal (0x1) or external trigger (0x2)
mode.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set trigger mode()

3.30 mx area detector get use scaled dark current flag
NAME

mx area detector get use scaled dark current flag - returns the use scaled dark current flag

SYNOPSIS
mx status type mx area detector get use scaled dark current flag ( MX RECORD *record,

mx bool type *use scaled dark current );



3.31. MX AREA DETECTOR IS BUSY 73

DESCRIPTION
This function returns the use scaled dark current flag for the area detector. If the use scaled dark current
flag is set in the detector computer, dark current subtraction will be done using dark current values that have
been rescaled to the actual exposure time of the image. If the use scaled dark current flag is not set, then raw
unscaled dark current values will be subtracted instead.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set use scaled dark current flag

3.31 mx area detector is busy
NAME

mx area detector is busy - reports whether or not the area detector is acquiring an image sequence, correcting
a frame, or making a correction frame measurement.

SYNOPSIS
mx status type mx area detector is busy ( MX RECORD *record,

mx bool type *busy );

DESCRIPTION
This is a utility function that reports whether or not the area detector is currently acquiring images for an image
sequence. mx area detector is busy() returns TRUE if any of the status bits

MXSF AD ACQUISITION IN PROGRESS (0x1),

MXSF AD CORRECTION IN PROGRESS (0x2), or

MXSF AD CORRECTION MEASUREMENT IN PROGRESS (0x4)

are set.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get status(), mx area detector get extended status()

3.32 mx area detector load frame
NAME

mx area detector load frame - load an image frame into the requested image buffer

SYNOPSIS
mx status type mx area detector load frame ( MX RECORD *record,

long frame type,
char *frame filename );



74 CHAPTER 3. AREA DETECTOR API REFERENCE

DESCRIPTION
This function loads an image frame into a frame buffer on the detector computer specified by frame type
from the file on the detector computer specified by frame filename. This function is intended to be used for
loading mask, bias, dark current, and flood field image frames on the detector computer. The image for-
mat for the file must match the image format of the detector computer’s area detector record. If it does not,
the load will fail. The allowed values of the frame type argument can be found in the description of the
mx area detector copy frame() function.

If you want to load an image frame into a user application program, then you should be using the function
mx image read file() instead.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector copy frame(), mx area detector save frame(), mx image read file(),
mx image write file()

3.33 mx area detector measure correction frame
NAME

mx area detector measure correction frame - perform a series of measurements to construct a correction
frame

SYNOPSIS
mx status type mx area detector measure correction frame ( MX RECORD *record,

long correction measurement type,
double correction measurement time,
long num correction measurements );

DESCRIPTION
mx area detector measure correction frame() is used to generate the data with which to construct either a
dark current correction frame or a flood field correction frame. The correction measurement type is one of the
two values MXFT AD DARK CURRENT FRAME or MXFT AD FLOOD FIELD FRAME as described in
Section 3.1.2. The correction frame is measured by taking the average of num correction measurements worth
of detector images for an exposure time per frame of correction measurement time.

In general, the dark current frame should be measured without any radiation hitting the detector, while the flood
field frame should be measured with a uniform source of radiation hitting the detector.

Since the absolute intensity of the dark current frame is normally a function of the exposure time, you can
choose to either rescale the dark current intensity to the actual exposure time or else subtract the unscaled dark
current value. The choice of mode can be made using mx area detector set use scaled dark current flag().

There are also a pair of convenience macros called mx area detector measure dark current frame() and
mx area detector measure flood field frame() which call mx area detector measure correction frame()
to do the real work.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.



3.34. MX AREA DETECTOR MEASURE DARK CURRENT FRAME 75

SEE ALSO
mx area detector measure dark current frame(), mx area detector measure flood field frame(),
mx area detector set use scaled dark current flag()

3.34 mx area detector measure dark current frame
NAME

mx area detector measure dark current frame - perform a series of measurements to construct a dark cur-
rent frame

SYNOPSIS
mx status type mx area detector measure dark current frame ( MX RECORD *record,

double correction measurement time,
long num correction measurements );

DESCRIPTION
mx area detector measure dark current frame() invokes mx area detector measure correction frame()
with the correction measurement type set to MXFT AD DARK CURRENT FRAME. See the description of
mx area detector measure correction frame() for more information.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector measure correction frame(), mx area detector measure flood field frame()

3.35 mx area detector measure flood field frame
NAME

mx area detector measure flood field frame - perform a series of measurements to construct a flood field
frame

SYNOPSIS
mx status type mx area detector measure dark current frame ( MX RECORD *record,

double correction measurement time,
long num correction measurements );

DESCRIPTION
mx area detector measure flood field frame() invokes mx area detector measure correction frame()
with the correction measurement type set to MXFT AD FLOOD FIELD FRAME. See the description of
mx area detector measure correction frame() for more information.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector measure correction frame(), mx area detector measure dark current frame()



76 CHAPTER 3. AREA DETECTOR API REFERENCE

3.36 mx area detector readout frame
NAME

mx area detector readout frame - read a frame into the primary image buffer

SYNOPSIS
mx status type mx area detector readout frame ( MX RECORD *record,

long frame number );

DESCRIPTION
This function reads the requested image frame from the area detector hardware into the primary image buffer
of the detector computer. If the requested frame number is -1, the most recently acquired image will be read
out.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

3.37 mx area detector save frame
NAME

mx area detector save frame - save a frame from the requested image buffer to a file

SYNOPSIS
mx status type mx area detector save frame ( MX RECORD *record,

long frame type,
char *frame filename );

DESCRIPTION
This function saves an image frame from the frame buffer on the detector computer specified by frame type to
the file on the detector computer specified by frame filename. This function is primarily intended to be used for
saving the most recently acquired image frame to a disk file on the detector computer. However, it save frames
from any of the image buffers listed in the description of the mx area detector copy frame() function. The
image file will be written using the current image format of the area detector.

If you want a user application program to save an image frame to disk, then you should be using the function
mx image write file() instead.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector copy frame(), mx area detector load frame(), mx image read file(),
mx image write file()

3.38 mx area detector set binsize
NAME

mx area detector set binsize - set the current x and y image binning factors



3.39. MX AREA DETECTOR SET BULB MODE 77

SYNOPSIS
mx status type mx area detector set binsize ( MX RECORD *record,

long x binsize,
long y binsize );

DESCRIPTION
This function sets the scale factor for image frame binning in the detector. For example, if the x binsize is 2,
then the values of pairs of adjacent pixels in the X direction will added together and returned as one pixel value.
If both the x and y binsizes are set to 2, then a two by two square of four pixels will be added together and
returned as one pixel. If you want to put the detector into unbinned mode, then set both binsizes to 1.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get binsize()

3.39 mx area detector set bulb mode

NAME
mx area detector set bulb mode - change the area detector to use Bulb mode image sequences

SYNOPSIS
mx status type mx area detector set bulb mode ( MX RECORD *record,

long num frames );

DESCRIPTION
This function configures the area detector to use a Bulb mode image sequence. In Bulb mode, the area detector
uses the current state of an external trigger signal to determine when the exposure for the current frame should
start and end. In other words, in Bulb mode the area detector will expose the current frame for as long as the
external trigger input is set to high. When the external trigger input goes to the low state, the exposure for the
current frame ends. The next frame does not start until the external trigger input goes high again. The area
detector stops taking frames once the number of frames specified by the num frames argument have been taken.

If the area detector has not been configured by mx area detector set trigger mode() to use an external trigger
at the time that the next image sequence is started, the attempt to start the sequence will fail with an error.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set circular multiframe mode(), mx area detector set continuous mode(),
mx area detector set geometrical mode(), mx area detector set multiframe mode(),
mx area detector set one shot mode(), mx area detector set sequence parameters(),
mx area detector set streak camera mode(), mx area detector set strobe mode(),
mx area detector set subimage mode(), mx area detector set trigger mode()



78 CHAPTER 3. AREA DETECTOR API REFERENCE

3.40 mx area detector set circular multiframe mode

NAME
mx area detector set circular multiframe mode - change the area detector to use Circular Multiframe mode

image sequences

SYNOPSIS
mx status type mx area detector set circular multiframe mode ( MX RECORD *record,

long num frames,
double exposure time,
double frame time );

DESCRIPTION
This function configures the area detector to use a Circular Multiframe mode image sequence. Circular Mul-
tiframe mode sequences are similar to Multiframe mode sequences as described by the documentation for
mx area detector set multiframe mode(). The primary difference is that after a frame has been read into the
last of the area detector’s internal image buffers, the sequence goes back to the beginning to overwrite the first
image buffer.

For example, suppose that mx area detector get maximum frame number() reports that the area detector
has 25 internal frame buffers. If you start a Multiframe sequence, you can acquire at most 25 frames. However,
suppose you start a Circular Multiframe sequence with 40 frames requested. In this case, the first 25 frames of
will be written to internal frame buffers 0 to 24. The last 15 frames will then go back and overwrite internal
frame buffers 0 to 14. If your client program is able to read out frames faster than the server acquires them,
then you can read out an indefinitely large number of frames.

You must be careful to choose the time between the start of frames (called the frame time), so that frames
are read out before they are overwritten by later frames. Detectors like the Aviex PCCD-170170 detector are
definitely capable of acquiring frames faster than they can be read out, so this is a real issue.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector abort(), mx area detector set bulb mode(), mx area detector set continuous mode(),
mx area detector set geometrical mode(), mx area detector set multiframe mode(),
mx area detector set one shot mode(), mx area detector set sequence parameters(),
mx area detector set streak camera mode(), mx area detector set strobe mode(),
mx area detector set subimage mode(), mx area detector set trigger mode(), mx area detector stop()

3.41 mx area detector set continuous mode

NAME
mx area detector set continuous mode - change the area detector to use Continuous mode image sequences

SYNOPSIS
mx status type mx area detector set continuous mode ( MX RECORD *record,

double exposure time )



3.42. MX AREA DETECTOR SET CORRECTION FLAGS 79

DESCRIPTION
This function configures the area detector to use a Continuous mode image sequence. In Continuous mode, the
area detector repeatedly takes image frames that all have the same duration as requested by the exposure time
argument in seconds. Each new frame overwrites the previous one. The detector will continue taking frames
until explicitly stopped or aborted. It is anticipated that this mode will be mostly useful for diagnostic applica-
tions that want a continuously updated GUI display of images acquired by the detector.

Continuous mode can be used with either an internal trigger or an external trigger. If a strobed external trig-
ger mode been requested by mx area detector set trigger mode(), the detector will take a new frame for
each external trigger pulse received by the detector. If a non-strobed external trigger mode has been selected,
the detector will merely use the first external trigger received to start the sequence and ignore all subsequent
triggers.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector abort(), mx area detector set bulb mode(),
mx area detector set circular multiframe mode(), mx area detector set geometrical mode(),
mx area detector set multiframe mode(), mx area detector set one shot mode(),
mx area detector set sequence parameters(), mx area detector set streak camera mode(),
mx area detector set strobe mode(), mx area detector set subimage mode(),
mx area detector set trigger mode(), mx area detector stop()

3.42 mx area detector set correction flags
NAME

mx area detector set correction flags - specifies which image corrections are to be performed.

SYNOPSIS
mx status type mx area detector set correction flags ( MX RECORD *record,

unsigned long correction flags );

DESCRIPTION
The correction flags argument for this function is a bitmask that describes the set of image corrections to be en-
abled. A given correction is enabled if the bit for that correction in the bitmask has a value of 1. A description of
the bitmask for the available corrections can be found in the description for the mx area detector copy frame()
function. Please note that the MXFT AD IMAGE FRAME (0x1) bit has no meaning in this context.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector copy frame(), mx area detector get correction flags()

3.43 mx area detector set framesize
NAME

mx area detector set framesize - sets the current x and y image frame size



80 CHAPTER 3. AREA DETECTOR API REFERENCE

SYNOPSIS
mx status type mx area detector set framesize ( MX RECORD *record,

long x framesize,
long y framesize );

DESCRIPTION
For some detectors, this function sets the current resolution of image frames in the area detector taking binning
into account. Not all detectors support this function. Some will round the requested dimensions to the reported
size, while others will return an error regardless of the framesize values supplied.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get binsize(), mx area detector get framesize(),
mx area detector get maximum framesize()

3.44 mx area detector set geometrical mode
NAME

mx area detector set geometrical mode - change the area detector to use Geometrical mode image sequences

SYNOPSIS
mx status type mx area detector set geometrical mode ( MX RECORD *record,

long num frames,
double exposure time,
double frame time,
double exposure multiplier,
double gap multiplier );

DESCRIPTION
Geometrical mode sequences are currently only supported by the AVIEX PCCD-170170 CCD detector. Geo-
metrical mode sequences are multiframe sequences that take the number of frames requested by the num frames
argument. For the first frame, the duration of the exposure time in seconds will be the value requested by the
exposure time argument. The gap in seconds between the first and the second frames will be the frame time mi-
nus the exposure time and the detector readout time. For each subsequent frame, the exposure time will be the
exposure time for the previous frame multiplied by the value of the exposure multipler argument. Similarly, the
duration of the gap between frames will be the previous gap time multiplied by the value of the gap multiplier
argument. This means that the exposure time and the gap time will continue to get longer as the sequence
progresses.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set multiframe mode(),
mx area detector set one shot mode(), mx area detector set sequence parameters(),
mx area detector set streak camera mode(), mx area detector set strobe mode(),
mx area detector set subimage mode(), mx area detector set trigger mode()



3.45. MX AREA DETECTOR SET IMAGE FORMAT 81

3.45 mx area detector set image format
NAME

mx area detector set image format - changes the current image format

SYNOPSIS
mx status type mx area detector set image format ( MX RECORD *record,

long image format );

DESCRIPTION
This function sets the detector image format as a numerical value. A list of the supported image formats can be
found in Section 4.1.1.

WARNING
Most detectors do not support this function.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get image format()

3.46 mx area detector set multiframe mode
NAME

mx area detector set multiframe mode - change the area detector to use Multiframe mode image sequences

SYNOPSIS
mx status type mx area detector set multiframe mode ( MX RECORD *record,

long num frames,
double exposure time,
double frame time );

DESCRIPTION
This function configures the area detector to use a Multiframe mode image sequence. In Multiframe mode, the
exposure time specifies the duration in seconds of the exposure for each frame. In addition, the time interval
between the start of two consecutive frames will be the frame time in seconds.

Multiframe mode can be used with either an internal trigger or an external trigger. If an external trigger
mode has been configured by mx area detector set trigger mode(), the sequence uses the next pulse from
the external trigger to start the imaging sequences. All subsequent trigger pulses are ignored. The imaging
sequence will stop once the number of image frames requested by the num frames argument have been taken.

If you want the sequence to loop by going back to overwrite the first frame once the last frame has been
acquired, you should use mx area detector set circular multiframe mode() instead.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.



82 CHAPTER 3. AREA DETECTOR API REFERENCE

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set geometrical mode(),
mx area detector set one shot mode(), mx area detector set sequence parameters(),
mx area detector set streak camera mode(), mx area detector set strobe mode(),
mx area detector set subimage mode(), mx area detector set trigger mode()

3.47 mx area detector set one shot mode
NAME

mx area detector set one shot mode - change the area detector to use One-shot mode image sequences

SYNOPSIS
mx status type mx area detector set one shot mode ( MX RECORD *record,

double exposure time )

DESCRIPTION
This function configures the area detector to use a One-shot mode image sequence. In One-shot mode, the
area detector takes a single frame that is exposed for the duration requested by the exposure time argument.
One-shot mode can be used with either an internal trigger or an external trigger.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector abort(), mx area detector set bulb mode(),
mx area detector set circular multiframe mode(), mx area detector set continuous mode(),
mx area detector set geometrical mode(), mx area detector set multiframe mode(),
mx area detector set sequence parameters(), mx area detector set streak camera mode(),
mx area detector set strobe mode(), mx area detector set subimage mode(),
mx area detector set trigger mode(), mx area detector stop()

3.48 mx area detector set register
NAME

mx area detector set register - sets the value of the requested detector register

SYNOPSIS
mx status type mx area detector set register ( MX RECORD *record,

char *register name,
long *register value );

DESCRIPTION
This function sets the named detector register to the value specified. If the register value is not representable as
long integer, then the function returns an error.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.



3.49. MX AREA DETECTOR SET ROI 83

SEE ALSO
mx area detector get register()

3.49 mx area detector set roi

NAME
mx area detector set roi - sets the boundaries of the requested region of interest

SYNOPSIS
mx status type mx area detector set roi ( MX RECORD *record,

unsigned long roi number,
unsigned long *roi );

DESCRIPTION
This function returns the boundaries of the region of interest (ROI) specified by roi number. The boundaries of
the ROI are expressed in binned coordinates. The data in the boundary rows and columns is considered to be
part of the ROI.

The roi array argument is an array of four unsigned longs with the boundaries stored in the order Xmin, Xmax,
Ymin and Ymax. Here is an example of using this function:

...
MX_RECORD *ad_record;
unsigned long roi_number;
unsigned long roi[4];
...
roi_number = 5;

roi[0] = 1000; /* X minimum */
roi[1] = 2000; /* X maximum */
roi[2] = 1250; /* Y minimum */
roi[3] = 1750; /* Y maximum */

mx_status = mx_area_detector_set_roi( ad_record, roi_number, roi );

if ( mx_status.code != MXE_SUCCESS )
return mx_status;

...

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get roi()



84 CHAPTER 3. AREA DETECTOR API REFERENCE

3.50 mx area detector set sequence parameters
NAME

mx area detector set sequence parameters - sets up any of the available types of image sequences.

SYNOPSIS
mx status type mx area detector set sequence parameters ( MX RECORD *record,

MX SEQUENCE PARAMETERS *sequence parameters );

DESCRIPTION
mx area detector set sequence parameters() is the common function that underlies all of the other com-
mands for selecting specific sequence modes. The command takes a single argument which is a pointer to an
MX SEQUENCE PARAMETERS structure. The MX SEQUENCE PARAMETERS structure is defined as
follows:

typedef struct {
long sequence_type;
long num_parameters;
double parameter_array[MXU_MAX_SEQUENCE_PARAMETERS];

} MX_SEQUENCE_PARAMETERS;

The sequence type member specifies which type of sequence has been requested. The num parameters and the
parameter array members provide sequence type specific information for the sequence in question. In general,
it is simpler to use the higher level sequence specific mode setting functions.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set geometrical mode(),
mx area detector set multiframe mode(), mx area detector set one shot mode(),
mx area detector set streak camera mode(), mx area detector set strobe mode(),
mx area detector set subimage mode(), mx area detector set trigger mode()

3.51 mx area detector set sequence start delay
NAME

mx area detector set sequence start delay - changes the sequence start delay time.

SYNOPSIS
mx status type mx area detector set sequence start delay ( MX RECORD *record,

double sequence start delay );

DESCRIPTION
For some area detectors, the detector can be configured to wait for a specified delay time before starting the
data acquisition sequence. This function changes the value of the delay time in seconds. Area detectors that do
not support this feature will return an error.



3.52. MX AREA DETECTOR SET STREAK CAMERA MODE 85

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get detector readout time(), mx area detector get sequence start delay()
mx area detector get total acquisition time(), mx area detector get total sequence time(),

3.52 mx area detector set streak camera mode
NAME

mx area detector set streak camera mode - change the area detector to use Streak Camera mode image
sequences

SYNOPSIS
mx status type mx area detector set streak camera mode ( MX RECORD *record,

long num lines,
double exposure time per line );

DESCRIPTION
This is an AVIEX PCCD-170170 detector specific mode. In Streak Camera mode, acquires the specified
number of image lines with the specified exposure time per line. The number of lines in a streak camera
image can greatly exceed the normal number of lines in a full frame image.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set geometrical mode(),
mx area detector set multiframe mode(), mx area detector set one shot mode(),
mx area detector set sequence parameters(), mx area detector set strobe mode(),
mx area detector set subimage mode(), mx area detector set trigger mode()

3.53 mx area detector set strobe mode
NAME

mx area detector set strobe mode - change the area detector to use Strobe mode image sequences

SYNOPSIS
mx status type mx area detector set strobe mode ( MX RECORD *record,

long num frames,
double exposure time );

DESCRIPTION
This function configures the area detector to use a Strobe mode image sequence. In Strobe mode, the start of
each frame in the sequence is triggered by an external trigger signal. The exposure time for each frame lasts for
the amount of time in seconds requested by the exposure time argument. The area detector stops taking frames
once the number of frames specified by the num frames argument have been taken. If an external trigger signal
arrives before the preceding frame has finished, the results are undefined and depend on the particular area



86 CHAPTER 3. AREA DETECTOR API REFERENCE

detector hardware in use. When the next image sequence is started, if the area detector has not been configured
by mx area detector set trigger mode() to use an external trigger, the attempt to start the sequence will fail
with an error.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set geometrical mode(),
mx area detector set multiframe mode(), mx area detector set one shot mode(),
mx area detector set sequence parameters(), mx area detector set streak camera mode(),
mx area detector set subimage mode(), mx area detector set trigger mode()

3.54 mx area detector set subimage mode
NAME

mx area detector set subimage mode - change the area detector to use Subimage mode image sequences

SYNOPSIS
mx status type mx area detector set subimage mode ( MX RECORD *record,

long num lines per subimage,
long num subimages,
double exposure time,
double subimage time,
double exposure multiplier,
double gap multiplier );

DESCRIPTION
This function, which is specific to the AVIEX PCCD-170170, tells the detector hardware to only readout the
specified number of image lines from the detector centered at the center of the bottom row of CCDs. This is
repeated for the specified number of subimages.

In some ways, this mode is similar to the Geometrical mode in that the exposure time and gap time are mul-
tiplied by exposure and gap multipliers for each subimage after the first. For this mode, the subimage time
argument plays the same role for each subimage as the frame time does for the Geometrical mode.

WARNING
The number of lines times the number of subimages must be less than or equal to the number of lines in a full
frame subimage. Column binning is restricted to either 1 or 2 in this mode.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector set bulb mode(), mx area detector set circular multiframe mode(),
mx area detector set continuous mode(), mx area detector set geometrical mode(),
mx area detector set multiframe mode(), mx area detector set one shot mode(),
mx area detector set sequence parameters(), mx area detector set streak camera mode(),
mx area detector set trigger mode()



3.55. MX AREA DETECTOR SET TRIGGER MODE 87

3.55 mx area detector set trigger mode
NAME

mx area detector set trigger mode - sets the internal/external trigger mode for the detector

SYNOPSIS
mx status type mx area detector set trigger mode ( MX RECORD *record,

long trigger mode );

DESCRIPTION
This function will be used to switch between internal (0x1) and external (0x2) trigger mode.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get trigger mode()

3.56 mx area detector set use scaled dark current flag
NAME

mx area detector set use scaled dark current flag - changes the state of the use scaled dark current flag

SYNOPSIS
mx status type mx area detector set use scaled dark current flag ( MX RECORD *record,

mx bool type use scaled dark current );

DESCRIPTION
This function changes the state of the use scaled dark current flag for the area detector. If the flag is set,
dark current subtraction will be done using dark current values that have been rescaled to the actual exposure
time of the image. If the use scaled dark current flag is not set, then raw unscaled dark current values will be
subtracted instead.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector get use scaled dark current flag

3.57 mx area detector setup frame
NAME

mx area detector setup frame - create a new frame or modify the size of an existing one.

SYNOPSIS
mx status type mx area detector setup frame ( MX RECORD *record,

MX IMAGE FRAME **frame );



88 CHAPTER 3. AREA DETECTOR API REFERENCE

DESCRIPTION
This function takes a pointer to an MX IMAGE FRAME pointer as its second argument as in this example:

...
MX_IMAGE_FRAME *frame;
...
mx_status = mx_area_detector_setup_frame( record, &frame );
...

If you assign NULL to the frame pointer before invoking mx area detector setup frame(), it assumes that
you want to create a new MX IMAGE FRAME structure with dimensions that match the current configuration
of the specified area detector.

If you assign NULL to the frame pointer before invoking mx area detector setup frame(), it assumes that
you just want to verify that the MX IMAGE FRAME object you are passing contains an image data array that
is big enough to hold a new image frame read from the detector. If the array is already big enough, then nothing
is done to the MX IMAGE FRAME object. If the array is not big enough, the old array is freed and a new
array is allocated to take its place.

The purpose of mx area detector setup frame() is to make it easy to always ensure that the image frame
object you are using is big enough to hold a new frame from the area detector, while minimizing the number of
memory allocations that have to be performed.

Please note that framesize, format, and other parameters of the MX IMAGE FRAME are determined by look-
ing at the current configuration of the specified area detector record. If you want to directly specify all of these
parameters yourself, then the function you want to use is mx image alloc().

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx image alloc(), mx image free()

3.58 mx area detector start
NAME

mx area detector start - starts a imaging sequence

SYNOPSIS
mx status type mx area detector start ( MX RECORD *record );

DESCRIPTION
This is a utility function that starts an imaging sequence by invoking mx area detector arm() followed by
mx area detector trigger().

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector arm(), mx area detector trigger()



3.59. MX AREA DETECTOR STOP 89

3.59 mx area detector stop
NAME

mx area detector stop - stops all area detector activity after the current frame

SYNOPSIS
mx status type mx area detector stop ( MX RECORD *record );

DESCRIPTION
This function tells the area detector to stop any imaging sequence in process after the current frame completes.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector abort()

3.60 mx area detector transfer frame
NAME

mx area detector transfer frame - sends an image frame to a user application

SYNOPSIS
mx status type mx area detector transfer frame ( MX RECORD *record,

long frame type,
MX IMAGE FRAME *destination frame );

DESCRIPTION
This function tells the detector computer to send an image from the requested detector frame buffer to the
user application. The transferred frame will be saved in the specified destination frame in the user applica-
tion. You must make sure that the destination frame object has been set up in advance by a call to either
mx area detector setup frame() or mx image alloc() before invoking this function or else it will return an
error.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector setup frame(), mx area detector readout frame(), mx image alloc()

3.61 mx area detector trigger
NAME

mx area detector trigger - sends a internal trigger to the area detector

SYNOPSIS
mx status type mx area detector trigger ( MX RECORD *record );



90 CHAPTER 3. AREA DETECTOR API REFERENCE

DESCRIPTION
This function tells the detector computer to send an internal trigger to the area detector hardware to start an
imaging sequence.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector arm(), mx area detector start()



Chapter 4

Image API Reference

4.1 Image Definitions

4.1.1 Image Formats
Each image handled by MX has a defined image format. The following three formats are the most important ones:

MXT IMAGE FORMAT RGB (1)
This is a 24-bit color format with 8 bits each for Red, Green, and Blue.

MXT IMAGE FORMAT GREY8 (2)
This format is 8-bit greyscale.

MXT IMAGE FORMAT GREY16 (3)
This format is 8-bit greyscale.

These formats are important since all other in memory image formats are eventually converted to one of these three
format by MX. Keep in mind that in memory image formats are not the same as datafile image formats.

The following formats are raw formats as generated by image capture boards:

MXT IMAGE FORMAT RGB565
This is a 16-bit color format with 5 bits for red, 6 bits for green, and 5 bits for blue.

MXT IMAGE FORMAT YUYV
This is a packed YCbCr color format which is known in the Windows world as YUY2.

4.1.2 Datafile Formats
Two file formats are currently supported. They are:

MXT IMAGE FILE PNM
The PNM file format is described at ( http://netpbm.sourceforge.net/doc/index.html ). It is supported by a
wide variety of image viewing programs in the Linux/Unix world and is supported at least by Irfanview in the
Windows world. This format is not intended for routine use with scientific data, since it does not really have a
place to store header information.

91



92 CHAPTER 4. IMAGE API REFERENCE

MXT IMAGE FILE SMV
The SMV file format is used for area detectors from companies like AVIEX ( http://www.aviex-tech.com/ ) and
ADSC ( http://www.adsc-xray.com/ ). This format is widely supported by scientific analysis software in the
crystallography, diffraction, and scattering communities.

4.1.3 Image Headers
MX IMAGE FRAME structures contain a binary image header in the header data element of the structure. This
binary header is not intended to be written to disk, since the last thing the world needs is yet another image file
format. However, header data serves as a convenient place in which to store values that are read from or written to
disk files and detectors. Values in the binary image header are always 32-bit integers in native byte order.

There are number of macros that can be used to get and set the values of header variables. Here is a list of the
current header variables with image frame standing for a pointer to an MX IMAGE FRAME structure:

MXIF HEADER BYTES( image frame )
This contains the length of header data in bytes. In general, it is a bad idea to write to this value.

MXIF ROW FRAMESIZE ( image frame )
This is the width of the image in pixels.

MXIF COLUMN FRAMESIZE ( image frame )
This is the height of the image in pixels.

MXIF ROW BINSIZE( image frame )
This value describe how many raw detector pixels were combined in the horizontal direction to create one
image pixel.

MXIF COLUMN BINSIZE( image frame )
This value describe how many raw detector pixels were combined in the vertical direction to create one image
pixel.

MXIF IMAGE FORMAT( image frame )
The supported image format types are described in Section 4.1.1.

MXIF BYTE ORDER( image frame )
0x1 = Big-endian, 0x2 = Little-endian.

MXIF BYTES PER MILLION PIXELS( image frame )
Some existing image formats have a non-integer number of bytes per pixel. We handle this by multiplying that
non-integer value by 106 and then rounding that to the nearest integer.

MXIF BITS PER PIXEL( image frame )
The number of significant bits of data per pixel.

MXIF EXPOSURE TIME SEC( image frame )
MXIF EXPOSURE TIME NSEC( image frame )

These variables contain the exposure time in seconds. The integer part goes in MXIF EXPOSURE TIME SEC()
while the fractional remainder is placed in MXIF EXPOSURE TIME NSEC() expressed in units of nanosec-
onds.



4.2. MX IMAGE ALLOC 93

MXIF TIMESTAMP SEC( image frame )
MXIF TIMESTAMP NSEC( image frame )

These variables contain the time at which the image frame was acquired using the same format as the exposure
time. The times are expressed relative to the Posix Epoch of (00:00:00 UTC, January 1, 1970).

All of these macros are defined in such a way that they can be assigned to. In esoteric terms, they expand to expres-
sions that are C language l-values; For example, the following is valid code to set the exposure time to 2.5 seconds:

MXIF_EXPOSURE_TIME_SEC(image_frame) = 2;
MXIF_EXPOSURE_TIME_NSEC(image_frame) = 500000000;

There are a couple of additional macros that convert the MXIF BYTES PER MILLION PIXELS to and from
double precision bytes per pixel values. The first macro is

MXIF BYTES PER PIXEL( image frame )

which returns the number of bytes per pixel as a double. This macro expands to a C expression that is not an l-value,
so we have to have the following macro as well:

MXIF SET BYTES PER PIXEL( image frame, bytes per pixel )

4.2 mx image alloc
NAME

mx image alloc - allocate an MX IMAGE FRAME object

SYNOPSIS
mx status type mx image alloc ( MX IMAGE FRAME **frame,

long row framesize,
long column framesize,
long image format,
long byte order,
double bytes per pixel,
size t header length,
size t image length );

DESCRIPTION
The mx image alloc() function either creates a new MX IMAGE FRAME object or else changes the size of an
existing MX IMAGE FRAME object to match the supplied function arguments. If you want to automatically
fetch the appropriate settings from your area detector record, you should use mx area detector setup frame()
instead.

This function takes as its first argument a pointer to an MX IMAGE FRAME pointer. If the frame pointer
passed is NULL, as in this example

...
MX_IMAGE_FRAME *frame;
...
frame = NULL;



94 CHAPTER 4. IMAGE API REFERENCE

...
mx_status = mx_image_alloc( &frame, ... );
...

then mx image alloc() will create a new MX IMAGE FRAME structure using the requested configuration.

If the frame pointer passed to mx image alloc() is not NULL, mx image alloc() will examine the current
configuration of the supplied MX IMAGE FRAME structure to see if it is already capable of holding an image
frame with the requested configuration. If the object can already hold the frame, mx image alloc() returns
without doing anything else. If the object cannot already hold the image frame, mx image alloc() will resize
the image data and header data arrays in the object so that they are big enough to hold an image frame with
the new dimensions. If the image frame object is resized, the old contents of the image data and header data
arrays are not preserved.

The arguments for mx image alloc() as follows:

MX IMAGE FRAME **frame
A pointer to the MX IMAGE FRAME object as described above.

long row framesize
This argument contains the width of the image in pixels.

long column framesize
This argument contains the height of the image in pixels.

long image format
This argument specifies the greyscale or color format of the image data. The currently supported values
for the image format are described in Section 4.1.1.

long byte order
This is set to 0x1 if the image data is in big endian format or to 0x2 if the image data is in little endian
format.

double bytes per pixel
The number of bytes that corresponds to one pixel. There exist some image formats for which this quantity
is not an integer, so we specify it here as a double.

size t header length
The length of the image header in bytes. If this length is specified as 0, then no memory will be allocated
for an image header.

size t image length
The length of the image data array in bytes. This length must be greater than 0.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector setup frame(), mx image free()



4.3. MX IMAGE COPY 1D PIXEL ARRAY 95

4.3 mx image copy 1d pixel array

NAME
mx image copy 1d pixel array - copies the image data array to an application program buffer

SYNOPSIS
mx status type mx image copy 1d pixel array ( MX IMAGE FRAME *frame,

void *destination pixel array,
size t max array bytes,
size t *num bytes copied );

DESCRIPTION
This function copies the contents of the image data array to an application program supplied buffer. No more
than max array bytes will be copied to the buffer. On return, the num bytes copied pointer will point to the
the number of bytes actually copied to the destination array. This number can be smaller than the requested
number of bytes if the actual length of the image data array is shorter than the value of max array bytes. If
you do not need to know the number of bytes copied, you can set the last argument of the function to a NULL
pointer.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx image get image data pointer()

4.4 mx image copy frame

NAME
mx image copy frame - copies the contents of one MX IMAGE FRAME object to another

SYNOPSIS
mx status type mx image copy frame ( MX IMAGE FRAME *old frame,

MX IMAGE FRAME **new frame);

DESCRIPTION
This function copies the contents of the existing old frame object to the new frame object, which may or may
not already exist. This function uses mx image alloc() internally, so if new frame does not already exist, it will
be created, while if new frame does already exist, it will be enlarged to contain the copy, if necessary.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx image alloc()



96 CHAPTER 4. IMAGE API REFERENCE

4.5 mx image copy header
NAME

mx image copy frame - copies the header of one MX IMAGE FRAME to another MX IMAGE FRAME

SYNOPSIS
mx status type mx image copy header ( MX IMAGE FRAME *source frame,

MX IMAGE FRAME *destination frame);

DESCRIPTION
This function copies the header from source frame to destination frame. This is mostly an infrastructure func-
tion, so application programs will probably never call it.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx image copy frame()

4.6 mx image free
NAME

mx image free - frees an MX IMAGE FRAME structure.

SYNOPSIS
void mx image free ( MX IMAGE FRAME *frame );

DESCRIPTION
This function frees all of the data structures allocated for the specified MX IMAGE FRAME object. The object
must not be used after this function has been invoked.

RETURN VALUE
mx image free does not return a value, since the free() function invoked by it does not return a value either.

SEE ALSO
mx image alloc()

4.7 mx image get average intensity
NAME

mx image get average intensity - reports the average intensity of an MX IMAGE FRAME

SYNOPSIS
mx status type mx image get average intensity ( MX IMAGE FRAME *frame,

double *average intensity );

DESCRIPTION
This function returns the average intensity for the image data in the specified MX IMAGE FRAME object.



4.8. MX IMAGE GET EXPOSURE TIME 97

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

4.8 mx image get exposure time
NAME

mx image get exposure time - reports the exposure time of an MX IMAGE FRAME

SYNOPSIS
mx status type mx image get exposure time ( MX IMAGE FRAME *frame,

double *exposure time );

DESCRIPTION
This function returns the recorded exposure time in seconds for the specified MX IMAGE FRAME object. If
the header of the frame does not contain the exposure time or the frame was read from a file format that does
not store the exposure time, the exposure time will be reported as 1 second.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

4.9 mx image get format name from type
NAME

mx image get format name from type - converts a numerical image format type to a text representation

SYNOPSIS
mx status type mx image get format name from type ( long type,

char *name,
size t max name length );

DESCRIPTION
This function takes a numerical image format type as defined near the top of the $MXDIR/include/mx image.h
header file and converts it into a matching text representation. The function will only copy up to max name length
bytes to the name buffer. The text representation returned will be in upper case.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx image get format type from name()

4.10 mx image get format type from name
NAME

mx image get format name from type - converts the name of an image format type to a numerical value



98 CHAPTER 4. IMAGE API REFERENCE

SYNOPSIS
mx status type mx image get format type from name ( char *name,

long type );

DESCRIPTION
This function takes the text representation of an image format and converts it to a numerical image format type
as defined near the top of the $MXDIR/include/mx image.h header file. The text representation can be in
either upper or lower case.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx image get format name from type()

4.11 mx image get frame from sequence
NAME

mx image get frame from sequence - returns the requested frame from an MX IMAGE SEQUENCE object

SYNOPSIS
mx status type mx image get frame from sequence ( MX IMAGE SEQUENCE *sequence,

long frame number,
MX IMAGE FRAME **image frame );

DESCRIPTION
This function returns the MX IMAGE FRAME object corresponding to the requested frame number from the
specified MX IMAGE SEQUENCE object.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

4.12 mx image get image data pointer
NAME

mx image get image data pointer - returns a pointer to the image data for an MX IMAGE FRAME object

SYNOPSIS
mx status type mx image get image data pointer ( MX IMAGE FRAME *frame,

size t *image length,
void **image data pointer );

DESCRIPTION
This function returns the length of the image and the image data pointer for the specified MX IMAGE FRAME
object. You must know the image format, which can be found at frame-¿image format, in order to successfully
manipulate the image data. However, for most area detectors this value will always be the same.



4.13. MX IMAGE READ FILE 99

As an example, the AVIEX PCCD-170170 CCD detector always uses a GREY16 image format, which means
that the image data made up of 16-bit greyscale pixels. MX already has a C99-compatible uint16 t typedef in
the $MXDIR/include/mx stdint.h header file which can be used to manipulate this data format.

WARNING
If an MX imaging function increases the size of the image data array in an MX IMAGE FRAME structure,
the old image data array will be freed and a new one allocated in its place. In general, the new image data
array will be at a different address, which means that an image data pointer returned by a previous call to
mx image get image data pointer() will no longer be valid. In general, the safest thing to do is to reinvoke
mx image get image data pointer() each time that you need this pointer.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx image copy 1d pixel array()

4.13 mx image read file

NAME
mx image read file - reads an image frame from a disk file into an MX IMAGE FRAME object

SYNOPSIS
mx status type mx image read file ( MX IMAGE FRAME **frame,

unsigned long datafile type,
char *datafile name );

DESCRIPTION
This function reads an image frame from the disk file specified by the datafile name argument on the user
application computer into the specified MX IMAGE FRAME. If needed, the MX IMAGE FRAME object
will be created or resized internally by mx image alloc().

If you want to read an image on the detector computer’s disk into one of the frame buffers of the detector
computer’s server, you should be using mx area detector load frame() instead.

WARNING
The datafile type supplied must match the actual data format of the disk file or else mx image read file() will
fail with an error. mx image read file() does not attempt to detect the file format on its own. See Section 4.1.2
for the list of supported datafile formats.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector load frame(), mx image write file()



100 CHAPTER 4. IMAGE API REFERENCE

4.14 mx image rebin
NAME

mx image rebin - creates a rebinned image frame from another image frame

SYNOPSIS
mx status type mx image rebin ( MX IMAGE FRAME **rebinned frame,

MX IMAGE FRAME *original frame,
unsigned long row rebinning factor,
unsigned long column rebinning factor );

DESCRIPTION
This function reads an existing original image frame and creates a new rebinned version. The rebinning process
replaces rectangular groups of pixels with a single pixel that contains the average of the pixel values in the
original rectangular group. For example, suppose you write something like this:

...
mx_status = mx_image_rebin( &rebinned_frame, original_frame, 4, 2 );
...

where original frame is a 4096x4096 image frame. The rebinned frame will be a 1024x2048 pixel image frame.
Each pixels in the rebinned frame then corresponds to the average of a group of pixels in the original frame that
is 4 columns wide and 2 rows high.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

4.15 mx image write file
NAME

mx image write file - writes the contents of an MX IMAGE FRAME object to a disk file

SYNOPSIS
mx status type mx image write file ( MX IMAGE FRAME **frame,

unsigned long datafile type,
char *datafile name );

DESCRIPTION
This function writes the contents of an MX IMAGE FRAME to the disk file specified by the datafile name
argument on the user application computer. You must specify the file format you want in the datafile type
argument. See Section 4.1.2 for the list of supported datafile formats.

If you want to write an image buffer in the detector computer’s server to a file on the detector computer’s disk,
you should be using mx area detector save frame() instead.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx area detector save frame(), mx image read file()



4.16. MX SEQUENCE GET EXPOSURE TIME 101

4.16 mx sequence get exposure time
NAME

mx sequence get exposure time - returns the exposure time for the specified frame in a sequence

SYNOPSIS
mx status type mx sequence get exposure time ( MX SEQUENCE PARAMETERS *sp,

long frame number,
double *exposure time );

DESCRIPTION
This function returns the exposure time in seconds for the specified frame number in a sequence. For most
sequences, the exposure time is the same for all frames. However, for Geometrical and Subimage sequences,
each frame can have a different exposure time.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx sequence get average intensity(), mx sequence get frame time(), mx sequence get num frames()

4.17 mx sequence get frame time
NAME

mx sequence get frame time - returns the duration of the specified frame in a sequence

SYNOPSIS
mx status type mx sequence get frame time ( MX SEQUENCE PARAMETERS *sp,

long frame number,
double *exposure time );

DESCRIPTION
This function returns the frame duration in seconds for the specified frame number in a sequence. For most
sequences, the frame duration is the same for all frames. However, for Geometrical and Subimage sequences,
each frame can have a different frame duration.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx sequence get exposure time(), mx sequence get num frames()

4.18 mx sequence get num frames
NAME

mx sequence get num frames - returns the total number of frames in a sequence



102 CHAPTER 4. IMAGE API REFERENCE

SYNOPSIS
mx status type mx sequence get num frames ( MX SEQUENCE PARAMETERS *sp,

long *num frames );

DESCRIPTION
This function returns the total number of frames in a sequence.

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx sequence get exposure time(), mx sequence get frame time()



Chapter 5

Utility API Reference

5.1 mx get record

NAME
mx get record - Get an MX RECORD object from the MX database.

SYNOPSIS
MX RECORD *mx get record ( MX RECORD *mx database record,

char *record name );

DESCRIPTION
mx get record() searches the MX database specified by mx database record for the MX RECORD object that
has a name that matches the record name argument. Although it is conventional to supply a pointer to the MX
list head record called mx database, you can actually supply a pointer to any of the records in the running
database and it will find the record with the matching name if it exists.

RETURN VALUE
If successful, mx get record() returns a pointer to the MX RECORD object with the specified name. If no
record with that name exists in the MX runtime database, mx get record() returns a NULL pointer.

SEE ALSO
mx setup database(), mx setup database from array()

5.2 mx setup database

NAME
mx setup database - configures and initializes the MX runtime database

SYNOPSIS
mx status type mx setup database ( MX RECORD **mx database record,

char *database filename );

103



104 CHAPTER 5. UTILITY API REFERENCE

DESCRIPTION
mx setup database() is a utility function that does all of the work necessary to create an MX runtime database
that is ready to be used by application programs. In outline, mx setup database() does the following:

• Initialize the MX runtime environment using mx initialize runtime().
• Initialize the MX device drivers using mx initialize drivers().
• Create an empty MX runtime database using mx initialize record list().
• Setup all of the records in the MX runtime database using mx read database file().
• Finish initialization of record data structures using mx finish database initialization().
• Initialize connections to the data acquisition hardware and remote servers using mx initialize hardware().

After the MX runtime database has been initialized, you may get pointers to individual records in it using the
function mx get record().

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx get record(), mx setup database from array()

5.3 mx setup database from array
NAME

mx setup database from array - configures and initializes the MX runtime database from an in memory
database

SYNOPSIS
mx status type mx setup database from array ( MX RECORD **mx database record,

long num records,
char **record description array );

DESCRIPTION
mx setup database from array() is a variant of mx setup database() that reads the database records from
an in memory array rather than a disk file.

See Section 2.2.6 for an example of how to use mx setup database from array().

RETURN VALUE
On success, the status code MXE SUCCESS is returned.

SEE ALSO
mx get record(), mx setup database()



Appendix A

Using motor to Test an MX Area Detector

Motor is a command-line based MX application program used by some beamlines to control many of their exper-
iments. It is not anticipated that users of MX-controlled area detectors will use the motor program. However, for
initial testing by beamline staff, it may be useful since it implements commands for controlling area detectors. In
addition, it is the only significant user application bundled with the core MX distribution.

If you have chosen the name $MXDIR/etc/motor.dat for your MX client database and setup the MXDIR en-
vironment variable, you can start up the motor program by just typing the command motor at a Linux/Unix shell
prompt or Win32 DOS prompt. The procedure should look something like this:

id1:˜$ motor

MX version 1.4.0 (October 20, 2006)
WARNING: Save file ’/home/lavender/scan.dat’ is empty.

motor>

You will not be using MX scans, so do not worry about the error message concerning the scan.dat file.

If you are using an MX server and the server is not running, you will get a series of errors like the following.

id1:˜$ motor

MX version 1.5.0 (August 7, 2007)
WARNING: Save file ’/home/lavender/scan.dat’ is empty.

MXE_NETWORK_IO_ERROR in mx_tcp_socket_open_as_client():
-> connect() to host ’192.168.137.3’, port 9727 failed. Errno = 111. >

Error string = ’Connection refused’.
MXE_NETWORK_IO_ERROR in mxn_tcpip_server_open():
-> The MX server at port 9727 on the computer ’192.168.137.3’ is either >

not running or is not working correctly. You can try to fix this by >
restarting the MX server.

*** Reconnecting to server ’adserver’ at ’192.168.137.3’, port 9727.
MXE_NETWORK_IO_ERROR in mx_tcp_socket_open_as_client():

105



106 APPENDIX A. USING MOTOR TO TEST AN MX AREA DETECTOR

-> connect() to host ’192.168.137.3’, port 9727 failed. Errno = 111. >
Error string = ’Connection refused’.

MXE_NETWORK_IO_ERROR in mxn_tcpip_server_open():
-> The MX server at port 9727 on the computer ’192.168.137.3’ is either >

not running or is not working correctly. You can try to fix this by >
restarting the MX server.

motor>

Some of the lines of output are too wide to fit the page in this manual, so we have artificially broken the lines of
output so that all of the output can be seen. The > symbols above mark the places where we have broken the lines.
Note that motor attempted to reconnect just in case the failure was a momentary failure. This is a general feature of
MX clients such that if the connection to the server goes down, the client attempts to reconnect to the server the next
time that it wants to send a command to the server.

A.1 Motor Commands
Motor has a large number of commands for controlling a variety of different classes of devices. However, for area
detector use, there are really only three commands you should need to know about.

A.1.1 exit
The first command you should know about is the exit command which allows you to leave the motor program. The
procedure should look like this:

motor> exit
id1:˜$

A.1.2 show record
The show record command is useful since it allows you to verify that the MX runtime database is working. Using
this command should look like this:

motor> show record
mx_database list_head
adserver tcp_server "192.168.137.3" 9727
ad network_area_detector 8 0 (0,0,0,0) (0,0,0,0) adserver "ad"
motor>

If you see any error messages starting with prefixes like MXE . . . , then something is wrong with your configura-
tion and you need to fix it.

A.1.3 area detector
The area detector command is the most important command that you will use, since it allows you access to
much of the functionality of the area detector. You can get help for the area detector command by typing it at
a motor prompt with no arguments. Generally you can abbreviate command names and command arguments to the
shortest unique string that matches. In addition, you can use the alias ad for area detector.

Thus, if your area detector is named, for example, aviex, you can abbreviate a command like



A.1. MOTOR COMMANDS 107

area_detector aviex set one_shot_mode 2.5

down to something like this

area aviex set one 2.5

or something even shorter like this

ad aviex se o 2.5

NOTE: If the first thing you want to do with a new detector is take an image with it, the quickest place to start is with
the snap command described below.

The following sections describe the commands listed by the area detector command’s help message with ex-
planatory comments inserted. Most of these commands are one-to-one matches to the MX Area Detector API de-
scribed in Chapter 3.

Configuration Commands

motor> ad
Usage:

area_detector ’name’ get bytes_per_frame
area_detector ’name’ get bytes_per_pixel
area_detector ’name’ get bits_per_pixel
area_detector ’name’ get format
area_detector ’name’ get framesize
area_detector ’name’ set framesize ’x_framesize’ ’y_framesize’
area_detector ’name’ get maximum_framesize

The commands above return information about the current format of image frames in the detector computer.

area_detector ’name’ get trigger_mode
area_detector ’name’ set trigger_mode ’trigger mode’

The trigger commands are used to switch between internal trigger and external trigger modes.

area_detector ’name’ get correction_flags
area_detector ’name’ set correction_flags ’correction flags’

The correction flags commands are used to change the list of corrections applied to image frames, using a hexadecimal
format for displaying the individual bits in the flags value. For each bit that is set to 1, the corresponding correction
will be applied. The bit values are defined in Section 3.1.2.

area_detector ’name’ get register ’register_name’
area_detector ’name’ set register ’register_name’ ’register_value’

Each area detector has internal registers that are specific to that model of area detector. The above commands are
used to read and write these values. Each internal register is first given an ASCII name. Then, if the register has a
value that can be represented as a long integer, then the register commands can be used to change it.



108 APPENDIX A. USING MOTOR TO TEST AN MX AREA DETECTOR

Sequence Commands

area_detector ’name’ get sequence_parameters
area_detector ’name’ set one_shot_mode ’exposure time in seconds’
area_detector ’name’ set continuous_mode ’exposure time in seconds’
area_detector ’name’ set multiframe_mode ’# frames

’exposure time’ ’frame_time’
area_detector ’name’ set circular_multiframe_mode ’# frames’

’exposure time’ ’frame_time’
area_detector ’name’ set strobe_mode ’# frames’ ’exposure time’
area_detector ’name’ set bulb_mode ’# frames’
area_detector ’name’ set geometrical_mode ’# frames’

’exposure time’ ’frame_time’ ’exposure multiplier’ ’gap multiplier’
area_detector ’name’ set streak_camera_mode ’# lines’ ’exposure_time’
area_detector ’name’ set subimage_mode ’# lines per subimage’ ’#subimages’

’exposure time’ ’subimage_time’ ’exposure multiplier’ ’gap multiplier’

The sequence commands above can be used to control the type of imaging sequence that is to be performed by the
detector. A description of the available sequence types can be found in Section 2.5.

Binsize and ROI Configuration Commands

area_detector ’name’ get binsize
area_detector ’name’ set binsize ’x_binsize’ ’y_binsize’

The binsize commands are used to control the binning of pixels in the area detector. In general, the allowed bin sizes
are powers of two. Typically, the X and Y bin sizes have the same values, but not all area detectors require this.

area_detector ’name’ get roi ’roi_number’
area_detector ’name’ set roi ’roi_number’ ’xmin’ ’xmax’ ’ymin’ ’ymax’

The ROI commands are used to set the boundaries of regions of interest. The implementation of the ROIs is all
managed in software on the detector computer, so the maximum number of ROIs is limited only by the configuration
of the area detector record in the detector computer’s database.

Please note that the rows and columns specified for the X and Y minima and maxima are included within the
returned ROI data. In other words, a command like this

ad aviex set roi 5 1000 2000 200 500

will return a 1001 column by 301 row array including columns 1000 and 2000 and rows 200 and 500 in the data
returned for ROI 5.

Action Commands

area_detector ’name’ snap ’exposure_time’ ’file_format’ ’filename’

The snap command is the simplest way to get the detector to acquire and correct a single frame and then transfer the
frame to a disk file on the client computer. You can choose to save the image in any of the file formats supported by
MX. However, at the moment, the only file format that has been implemented already is PNM format.

Here is an example snap command line that commands a 2.5 second exposure and then writes the image to
“myimage.pgm”.



A.1. MOTOR COMMANDS 109

ad aviex snap 2.5 pnm myimage.pgm

Internally, the snap command selects One-shot mode, starts the detector, waits for the detector to finish, gets the
image data from the detector computer, and then writes it to a file on the local disk.

area_detector ’name’ take frame

The take frame command is somewhat different in that it starts the detector in whatever sequencer mode it hap-
pens to be in, waits for the sequence to finish, and then transfers the file to the memory of the client. It does not write
the file to disk.

area_detector ’name’ write frame ’file_format’ ’filename’
area_detector ’name’ write roiframe ’file_format’ ’filename’

The above commands do exactly what they say, namely, write out the contents of either the primary image buffer or
the ROI image buffer on the client side.

area_detector ’name’ arm
area_detector ’name’ trigger
area_detector ’name’ start
area_detector ’name’ stop
area_detector ’name’ abort

The above commands are the low level primitives for starting and stopping the detector.

area_detector ’name’ get last_frame_number
area_detector ’name’ get status
area_detector ’name’ get extended_status
area_detector ’name’ get busy

The commands above report on the current status of the area detector.

area_detector ’name’ get frame ’frame_number’

The get frame command does an image readout, image correction, and image transfer to the client. The available
values for frame number are described in Section 3.1.2.

area_detector ’name’ get roiframe ’roi_number’

The get roiframe command transfers to the client the contents of the specified ROI number. You must have
defined the boundaries for this particular ROI before invoking get roiframe. If you do not, you may end up with
the default ROI boundaries which only contain the single pixel (0,0) in binned coordinates.

area_detector ’name’ readout ’frame_number’

The readout command reads out the requested frame number from the camera hardware into the primary image
buffer on the detector computer.

area_detector ’name’ correct



110 APPENDIX A. USING MOTOR TO TEST AN MX AREA DETECTOR

The correct command performs mask, bias, dark current, and flood field corrections to the contents of the pri-
mary image buffer on the detector computer. A given correction will only be performed if the corresponding bit
is set in the area detector correction flags and if a correction frame has been loaded into the corresponding image
buffer on the detector computer. You may find more information about this operation in the function descriptions
of mx area detector set correction flags() and mx area detector correct frame() as well as the definition of the
frame buffer types used in the correction flag bits in Section 3.1.2.

area_detector ’name’ transfer ’frame_type’

The transfer command transfers the contents of the requested frame buffer on the detector computer to the primary
image buffer of the client. You may find the definitions of the frame buffer types in Section 3.1.2.

area_detector ’name’ load frame ’frame_type’ ’filename’
area_detector ’name’ save frame ’frame_type’ ’filename’
area_detector ’name’ copy frame ’src_frame_type’ ’dest_frame_type’

The above commands load frames, save frames, and copy frames between the various image buffers on the detector
computer. The frame buffer types are described in Section 3.1.2. The files that frame buffers are loaded from or saved
to are found on the detector computer.

area_detector ’name’ measure dark_current ’measurement_time’ ’# measurements’
area_detector ’name’ measure flood_field ’measurement_time’ ’# measurements’

The above commands measure dark current and flood field images on the detector computer. At the end of the
measurement, the resulting image frames are left in the matching dark current or flood field image buffers on the
detector computer and are ready to be used immediately for correction of new images as they are acquired. However,
the contents of the correction frames will be lost when the detector computer’s server shuts down. If you want to
preserve the contents of the new dark current and flood field correction frames, you must write them to disk using the
save frame command described above.



Appendix B

MX for Python

The MX binding for the Python language is called MP. The current version of MP implements methods for most of
the MX area detector functions. At present, a complete manual for MP has not yet been written. However, most of
the Python methods are a one-to-one map to the underlying C functions, so the C documentation in Chapters 3 and 4
can be used directly to explain the Python methods.

The MP methods themselves are defined in the Python module Mp. If MX and MP have been installed to the
default location of /opt/mx, the source for the Mp module can be found in the file /opt/mx/lib/Mp.py. Alternately,
you can find the Mp module file in the MP source distribution at the location mp/libMp/Mp.py.

The main classes to look at in Mp.py are the Mp.RecordList class, the Mp.Record class, the Mp.AreaDetector
class and the Mp.ImageFrame class. In addition, there are some examples in the mp/examples directory. That
directory contains three subdirectories. The mp/examples/simple directory contain example scripts that are designed
to work on Linux/Unix systems.

The scripts found in the mp/examples/mpscript make use of a front end Python script called mpscript that is
normally installed at /opt/mx/bin/mpscript. mpscript makes it easy to write scripts that will operate unchanged on
both Windows and Linux/Unix systems. Here is an example mpscript-based script that reports the position of an MX
motor.

#! /usr/bin/env mpscript
#
# This script reports the position of the requested motor.
#

def main( record_list, argv ):

if ( len(argv) != 1 ):
print ""
print "Usage: mp_get_position motorname"
print ""
sys.exit(0);

motor_name = argv[0]

motor = record_list.get_record( motor_name )

111



112 APPENDIX B. MX FOR PYTHON

position = motor.get_position()

units = motor.get_field("units")

print "Motor ’%s’ position = %g %s" % (motor_name, position, units)

The primary thing to notice is that all you have to do is create a main procedure that is passed two arguments.
They are record listwhich is a object that encapsulates the MX database and argvwhich contains the command
line arguments that were passed to the script. Unfortunately, there are not yet any area detector-specific script in the
Mp examples directory, but that should be rectified soon.


