
Recent Developments for
the MX Beamline
Control Toolkit

William M. Lavender

http://mx.iit.edu/
lavender@agni.phys.iit.edu

Illinois Institute of Technology
Chicago, Illinois 60616



Plan of the Talk

� Review of MX

� Exporting MX to Other Control Systems

� Performance Optimization

� New Drivers

� Graphical User Interfaces



What is MX?

� A portable beamline control toolkit:  Linux, Solaris, Irix, 
Windows, MacOS X, Cygwin, etc.

� Written in C, with Python and Tcl interfaces available.

� Designed as middleware.

� Comes with a set of servers and clients.

� Has an extensive set of device drivers:
68 motor and pseudomotor drivers,
with over 380 drivers altogether.

� MX servers and clients use the same set of drivers.

� Easy to interface to other people's drivers.

� Easy to embed in other applications and servers.



Current Usage of MX

� 3 beamlines use MX as a standalone control system.

� 6 beamlines use MX together with EPICS controlled 
devices.

MX is currently used at 9 beamlines at APS and CAMD.

So far, the primary usage pattern has been MX clients
calling out to servers based on MX, EPICS, and other
protocols.

However, we plan to change that.



Exporting MX to
Other Control Systems

� Each network accessible value is stored in an MX record 
field object.

� When writing to a record field object, the foreign server 
should write to the object data pointer, and then invoke 
mx_process_record_field().

� When reading, invoke mx_process_record_field() and 
then read from the data pointer.

� MX record processing logic explicitly does not care how 
values are transferred to or from the object data pointer.

� This interface is designed to make it easy for foreign 
servers to use MX device drivers and processing logic.



MX Channel Access Server

� Uses the EPICS portable Channel Access Server for the 
interface to EPICS clients.

� Uses MX event handlers, processing logic, and device 
drivers for the hardware interface.

� Our goal is to emulate the PV interface for existing 
EPICS records when possible.

� The first version supports the use of MX-controlled 
motors via an APS EPICS motor record compatible 
interface.

� Has already been used to control MX motors from 
MEDM and the MX client-side epics_motor record.



MX Spec Server

� An easier way to make software interfaces versatile is by 
porting to more than one target at the beginning.

� MX's second foreign server target will implement the 
remote Spec protocol.

� MX already implements the client side of remote Spec 
protocol.

� With the client side done, most of the code to implement 
a remote Spec server is already written.

� MX will only act as a Spec device server and will not 
attempt to emulate the Spec command line interface.



Other Foreign Servers

� Additional protocols will be added as needed and time 
permits.

� TACO/TANGO?   Blu Ice?   ???

� The original MX protocol will continue to be developed 
as well, since having a protocol that we are free to 
modify as needed can be very useful.



Multiprotocol Servers

� If you have a mix of clients that use different protocols, 
a multiprotocol server is useful.

� Eliminates the need for an extra network hop where one 
server type needs to be a client for another server type.

� Appears to be relatively easy to do for most of the 
protocols discussed so far.

� A top level event loop services each type of client 
protocol in turn.



Performance Optimization

� MX originally focused on getting functionality correct.

� Most of the original design goals have now been met, so 
it is time to focus on making MX as fast as possible.

� A portable high resolution timing package with sub-
microsecond resolution has been developed which runs 
on x86 Linux, Microsoft Windows, MacOS X, Solaris, 
and Irix.

� Profiling with programs like gprof is also very 
productive.



Performance – EZCA

	 Intended as an “easy” Channel Access interface 
requiring less knowledge of how EPICS works.

	 MX used EZCA up until MX 1.0.

	 High resolution timing measurements show that the 
default configuration of EZCA is quite slow.

	 ezcaGet() for an EPICS scaler channel in an m68k-based 
IOC had a roundtrip time of 60 milliseconds.



Performance – EZCA (cont.)


 Apparently it is possible to greatly speed up EZCA if 
you modify its default configuration.


 For MX 1.0, we decided that it was simpler to just 
remove EZCA and talk to Channel Access directly.


 With just that change, the 60 millisecond time mentioned 
above was reduced to 1.5 milliseconds (a factor of 40!).


 Replacing the m68k IOC with a PowerPC IOC improved 
it further to 0.5 milliseconds (only a factor of 3 though).


 MX now communicates with EPICS two orders of 
magnitude faster than before.



Performance – MX Server

� The MX server's performance has been significantly 
improved in MX 1.1 (not yet released).

� MX 1.1 has switched to binary data transfers.

� Switched to binary handles rather than transmitting 
ASCII record field names.

� Discovered that mxserver was often queueing events that 
really should have been handled immediately.

� Discovered that a delay introduced to make certain early 
drivers work correctly was unnecessarily slowing down 
other drivers that did not need the delay.



Performance – MX Server (cont.)

� The MX server in MX 1.1 now runs a couple of orders of 
magnitude faster than in previous versions of MX.

� A get_position command from an MX client to an MX 
server using software emulated motors now only takes 
around 75 microseconds on a 750 Mhz Pentium III.

� Individual MX drivers can now specify a minimum time 
between commands to the hardware controller.

� If the MX server and client are both on the same machine, 
faster transfers mechanisms than TCP/IP are possible.

� Running MX protocol over Unix domain sockets reduces 
the 75 microseconds above to 50 microseconds.



New MX Drivers


 MODBUS and USB interfaces are now supported.

� SIS 1100/3100 PCI-to-VME interface.

� ALS style sample changing robot.

� CCD control via MarCCD remote mode.

� Quad BPM control.

� New motor controllers – U500, SmartMotor, MDrive, 
PM600, Microglide, Phidget, etc.

� Spec controlled motors, scalers, and timers.

133 drivers have been added since the NOBUGS 2002 meeting
for a current total of 386.  Here are a few highlights:



Graphical User Interfaces

� Crystallography user interfaces have been moving 
toward Blu Ice style tabbed interfaces.

� Jim Fait of SER-CAT is writing a new Python-based 
tabbed GUI called sergui that was described in his talk 
earlier.

� The older Tcl-based imcagui of IMCA-CAT has also 
been remodeled into the tabbed format.

� Rigaku/MSC has been developing a newer IMCA-CAT 
Java-based GUI called JDirector that will interface to the 
beamline via a new Java interface to MX.



Graphical User Interfaces (cont.)

� Ken McIvor of IIT has been writing several new Python-
based GUIs for materials science.

� These include GUIs for microfocussing, XAFS, and 
lithography experiments.

� Ken has also written a new GUI for editing MX 
databases.



Conclusions

� MX has made a substantial amount of progress since the 
last NOBUGS meeting.

� Development of MX-based servers for foreign control 
systems such as EPICS is well under way.

� Work is under way to make MX a high performance 
control system with many substantial improvements 
already made.

� Several authors are currently working on MX-based 
beamline control GUIs.



Acknowledgements

H. Bellamy GCPCC, CAMD
B. Bunker MR-CAT, Notre Dame
J. Chrzas SER-CAT, U. Georgia
J. Fait SER-CAT, U. Georgia
A. Howard IIT
L. Keefe IMCA-CAT, IIT
I. Koshelev IMCA-CAT, IIT
J. Kropf MR-CAT, Argonne
N. Leyarovska APS, Argonne
K. McIvor IIT
G. Rosenbaum SER-CAT, U. Georgia
C. Segre MR-CAT, IIT
J. Terry MR-CAT, IIT


