
Recent Developments for the MX Beamline Control Toolkit

W. M. Lavender
Biological, Chemical, and Physical Sciences Department,
Illinois Institute of Technology, Chicago, Illinois 60616

(Dated: October 15, 2004)

This report discusses recent progress with MX, a data acquisition and control system with over 350
device drivers that has been under development for 9 years. MX is designed to be easily retargeted
to alternative hardware or operating systems and has long had the ability to call out as a client to
external control systems. We now report progress in the other direction of making MX usable as a
server component for other control systems. The goal here is to make it easy to reuse MX’s large
driver package in other control systems. We have striven to make it easy to write device drivers
for MX, so that beamline staff and graduate students can easily do the work. In addition, the new
server support will make drivers written this way immediately usable by multiple control systems.
The initial effort is to create EPICS and Spec servers that use the MX driver library to control
the hardware. We also report progress in other efforts, such as performance work to make MX
as fast and efficient as possible, both internally and in its connections to external control systems.
Support has been added for CCD camera control and robotic sample changers for crystallography.
There is also new support for MODBUS and USB interfaces, for beam position monitors, and
new enhancements to support for XIA multichannel analyzers. Other improvements include work
specific to Delta Tau PMAC motor controllers that allows a PMAC coordinate system to be used
as an MX pseudomotor. On the user interface side, work is underway for writing user interfaces for
a variety of synchrotron radiation experiments. These include a new tabbed format crystallography
GUI being developed by SER-CAT (Univ. of Georgia) and new GUIs for microfocussing, XAFS,
and lithography experiments. In addition, a graphical editor for editing MX databases has been
developed.

I. INTRODUCTION

MX is a portable beamline control and data acqui-
sition toolkit that has been reported on at previous
NOBUGS conferences [1] [2] [3] and elsewhere [4]. MX
is being jointly developed by the MR-CAT[5][6] IMCA-
CAT[7][8][9] and SER-CAT[10] sectors at the Advanced
Photon Source. It is currently in use at 9 beamlines at
the Advanced Photon Source and CAMD. MX is writ-
ten in ANSI C and it has scripting interfaces available
for Python and Tcl. MX has an extensive set of device
drivers with 68 motor and pseudomotor drivers and with
over 380 drivers altogether. The core of MX is designed
to be middleware, so it tries to be as independent of the
details of both the hardware it is communicating with
and the detailed nature of the servers and application
programs that are invoking it. As part of this, it also
tries to make all drivers for a given class of device look
as much alike as is practical. The intention is that drivers
writers need not know all that much about MX to get a
working driver. MX is also designed to be easy to in-
terface to other control system drivers and to be easy to
embed in the applications and servers belonging to other
control systems. This paper reports on recent develop-
ments with MX and plans for the near future. The MX
homepage may be found at http://mx.iit.edu/. At
the time of the writing of this paper, the current version
of MX is version 1.0.2.

II. EXPORTING MX TO OTHER CONTROL
SYSTEMS

MX was originally designed with four roles in mind:

• As a portable toolkit for writing data acquisition
and control systems.

• As a standalone system capable of controlling entire
experiments.

• As a platform for building device control servers to
be used by other applications.

• As a way of extending other control systems and of
glueing disparate control systems together

Of these, the first two were accomplished quite some time
ago. Until recently, the last two items have only been
wishlist items for the future. This has now changed, since
work has begun on the development of MX based servers
for other control systems.

A. External Server Interface

The interface between MX and an external control
system server is handled as follows. Each network ac-
cessible value is exported by a data structure called
an MX RECORD FIELD, which contains a pointer to
the value of the field. If an external server is at-
tempting to write to an MX record field, all it need
do is copy the field’s new value to the data pointer



2

and then invoke mx process record field() for that field.
mx process record field() will then figure out the correct
driver to invoke and then report back the status of the
operation so that the server can report this to the client.
Reading from an MX record field structure is similar ex-
cept that the server is expected to read the returned
value after mx process record field() is run. After some
additional restructuring is complete, MX will handle call-
backs in a similar manner.

The central idea here is that as long as the external
server code writes the value to the correct location, MX
explicitly does not care how the value got there. In par-
ticular, MX does not assume the use of a particular in-
terprocess method or protocol.

B. EPICS

For a number of reasons we have chosen first to export
the MX toolkit to EPICS [11] via the portable Channel
Access Server. The portable Channel Access Server is an
alternative to EPICS iocCore that implements a network
interface that looks like a Channel Access server, but
does not implement the underlying functionality of a data
acquisition server. Since MX already implements most
of the underlying features needed for such a server like
experiment control logic, device drivers and so forth, the
two packages seem like a good match. This new work is
being implemented using MX 1.1.0 which is expected to
be released before the end of 2004. For MX 1.1.0, the
event handlers and processing logic originally found in
the MX server have been abstracted out and move to the
main MX library, libMx, so that it can be used in other
servers or event-driven clients.

The initial development of the MX Channel Access
server focuses on exporting MX motor drivers to EPICS.
The MX Channel Access server does this by eumulating
the process variables of the EPICS motor record devel-
oped at the Advanced Photon Source. The emulation
will not be perfect since there are some EPICS motor
process variables that have no meaning in an MX con-
text, just as there are MX motor driver features that have
no counterpart in the APS EPICS motor record.

At present, the MX Channel Access server has pro-
gressed far enough that MX controlled motors can be
moved via standard EPICS MEDM screens and via MX’s
client-side epics motor record. Future development in the
near term will include making sure that the MX Channel
Access motor record can be used by Spec’s EPICS motor
support. Then, the focus will shift to implementing the
rest of the EPICS motor PVs that make sense in an MX
environment.

The long term goal for MX Channel Access support is
to export as much of the MX API as Channel Access PVs
as is practical. When possible, MX will try to emulate
existing EPICS record types.

C. Spec

One of the author’s favorite sayings is that there is
no such thing as portable software, just software that
has been ported. When new features are implemented
in MX, we generally try to implement more than one of
them so that the interface developed is not so dependent
on the idiosyncracies of the first implementation.

Thus, soon after finishing the external server for
EPICS, another external server interface will be devel-
oped which will probably be a remote Spec [12] server.
MX has recently implemented client-side drivers for con-
necting to a remote Spec server, so much of the necessary
software has already been written. The initial MX Spec
server will export MX motor, scaler, and timer records
since that is what is currently documented by Spec’s au-
thor.

Note that the MX Spec server will only be attempting
to emulate a subset of the remote Spec server function-
ality. The vendor’s remote Spec server has a Spec com-
mand line interface which is accessible to clients. Reim-
plementing all of the remote Spec server’s command line
functionality would be an enormous amount of work with
no obvious benefit, so we have no plans to do that. All
the MX Spec server will aspire to do is to provide MX
device support to Spec clients.

Support for exporting MX drivers beyond EPICS and
Spec will be done as timer permits and the need arises.
A couple of systems that we have envisioned doing this
for are TACO [13] and Blu Ice [14] . However, we cannot
currently promise when support for these other protocols
will be implemented.

D. Multiprotocol Servers

Another server related feature that will be added in the
near future will be multiprotocol servers. An example of
the need for this would be a situation where some clients
use MX protocols and other use EPICS protocols. Since
MX servers can also act as MX clients, one could envision
handling this by having an MX Channel Access server
that talked as a client to an MX server. Or one could
have an MX server that talked to a client to an EPICS
server. However, either way of implementing this would
result in one of the two types of clients having to suffer
with their commands being sent over two network hops
rather than one. Since network I/O can be expensive in
terms of time, MX plans to add support for multiprotocol
servers.

Thus, in the example above, you would now have a
single process that would simultaneously support both
EPICS and MX protocols. So far, it appears that it
should be possible to make the MX server, EPICS Chan-
nel Access server, Spec server, and Blu Ice device hard-
ware server live alongside each other in the same process
with the top level event loop processing each type of event
in turn.



3

Note that we do not plan to abandon the MX network
protocol in the forseeable future for one of the other pro-
tocols. Having our own protocol means that features can
be added to it as necessary. Also, we are able to directly
work on optimizing the speed of the protocol without
having to worry about creating an incompatible variant
of someone else’s protocol. In addition, we are able to
port the high level MX protocol to alternate low level
transports at will as will be discussed later.

III. PERFORMANCE OPTIMIZATION

Initial development of MX focused on the development
of functionality, plus correctness of behavior. However,
now that MX is close to meeting its primary design goals,
we are now working on MX performance improvements.
As part of this we have developed a high resolution tim-
ing package that provides sub-microsecond timing for x86
Linux, Microsoft Windows, MacOS X, Solaris and Irix.
Each of these platforms provides their own different way
of implementing high resolution timing such as the Pen-
tium RDTSC instruction, the Power PC timebase reg-
isters, and Microsoft Win32’s QueryPerformanceCoun-
ters(), so it has been convenient to create a uniform wrap-
per for this. The high resolution timer package has made
it easier to focus in on the performance implications of
small sections and even single lines of code. Although
there is still a lot of work remaining to be done on this
issue, we have already found and eliminated two impor-
tant performance bottlenecks in MX.

A. EZCA

The first major performance improvement related to
the use by MX of the EZCA [15] package to interface
with EPICS. EZCA, as its name implies, attempts to
be an easier interface to EPICS than the raw underly-
ing Channel Access protocol. EZCA does meet this goal
fairly well and was used in versions of MX prior to MX
1.0 as the primary interface to EPICS. However, after
benchmarking with the MX high resolution timer pack-
age, it appeared that the default configuration of EZCA
is quite slow. When benchmarked at sector 17-BM of the
Advanced Photon Source, it was found that EZCA took
60 milliseconds just to get the value from a scaler channel
using an m68k based EPICS IOC, which is tremendously
slow.

After initial investigation, it developed that the 60 mil-
lisecond interval was set by internal parameters of the
EZCA package and that it was possible by changing those
parameters to speed it up. However, investigation of
the EZCA source code showed that it contained a much
larger amount of code than we would have expected for
the task it was performing. Since the use that MX makes
of EPICS is fairly straightforward, it was decided that it
would be better and simpler to remove the dependence

on EZCA and have the MX EPICS drivers directly com-
municate with the Channel Access libraries.

This change has greatly speeded up MX’s communi-
cation with EPICS. When tested with the same m68k
based EPICS IOC, the 60 millisecond time shrank down
to 1.5 milliseconds, which is a factor of 40 improvement.
Ironically, the switch from a m68k IOC to a PowerPC
IOC which was done around the same time only resulted
in another factor of 3 improvement down to 0.5 millisec-
onds. The net result is that MX 1.0 now communicates
with EPICS around two orders of magnitude faster than
before.

B. MX Server

The other important protocol for MX clients is the MX
network protocol used to communicate with MX servers.
Some of the optimizations added in MX 1.1 have included
switching from ASCII to binary data formats for network
communication and the use of binary handles to repre-
sent MX record fields in remote servers rather than the
previous practice of sending the ASCII name for each net-
work call. However, the most important improvements
so far have been in the MX server itself.

One important change was the removal of a delay that
had been inserted into early versions of MX to make cer-
tain drivers work more reliably. The problem was that
this delay was also slowing down other drivers that did
not need the slowdown. The other change was that the
MX server was queueing almost all client requests for
later execution. Closer examination has shown that it is
better to service many of these requests immediately and
only queue requests for long running operations and for
individual drivers that need a delay.

With these changes, internal time overhead in the MX
server that sometimes were in the tens of millisecond
range have been reduced to tens of microseconds. For
example, for MX 1.1, a series of get position requests
by an MX client to an MX server using software emu-
lated motor records now only takes around 75 microsec-
onds per request on a 750 MHz Pentium III. Interpro-
cess communication on the same computer can be even
faster than that, so we have also been exploring the use
of alternate transport mechanism for MX communica-
tion within a single computer. Initial testing with MX
protocol running over Unix domain sockets reduced the
75 microsecond value above further down to around 55
microseconds, so there is indeed some room for improve-
ment here. We plan to explore other single computer in-
terprocess communication methods as well, although MX
communication between computers will probably always
be over TCP/IP.



4

C. Callback Support

At present, MX is largely a remote procedure call style
system, using callbacks in only restricted situation. Since
polling is often a source of inefficiency, we plan in MX 1.2
to improve the support for callbacks to the point where
one could envision doing most MX network I/O through
monitoring of record fields via callbacks. The callback
system will be made general enough to be used by MX
clients as well as MX servers to make it easier to write
event-driven MX clients. The callback support will also
be used for external servers such as the EPICS portable
Channel Access Server, which have a big need for this
type of functionality due to the use of event driven EPICS
GUIs such as MEDM, which rely heavily on asynchronous
monitor callbacks.

D. Additional Performance Testing

There are many other performance measurements that
we plan to make in the near future. Some of these will
revolve around particular devices that have large I/O re-
quirements. One particular system we plan to focus on
is the X-Ray Instrumentation Associates [16] MCA elec-
tronics for multielement detectors. MCAs for multiele-
ment detectors can generate large amounts of data, so
one of our priorities will be to make this run as fast as
possible.

IV. NEW MX DRIVERS

MX has been designed to make it relatively easy to
write new drivers, so a large number of drivers have been
added since the NOBUGS 2002 meeting.

A. Summary of New Drivers

Here are the highlights of the new drivers:

• Analog and Digital I/O:

– Crossbow Technology CXTILT02 digital incli-
nometer

– Linux parport digital I/O

– MODBUS analog and digital I/O

– Omega iSeries temperature and process con-
trollers

• CCD:

– CCD control via MarCCD remote mode

• Counters/Timers:

– Spec scaler/timer

• Current Amplifiers:

– Advanced Photon Source ADCMOD2
– Oxford Danfysik IC PLUS and QBPM
– UDT Tramp

• GPIB:

– IOtech Micro488EX

• MODBUS:

– MODBUS/TCP (tested with Wago 750)

• Motors and Pseudomotors:

– Aerotech Unidex 500
– Animatics SmartMotor
– Delta Tau PMAC coordinate system axis
– Intelligent Motion Systems MDrive
– McLennan PM600
– Oceaneering Space Systems µ-glide
– Oxford Cryosystems 600 series cryostream

controller
– Oxford Instruments ITC500 temperature con-

troller
– Phidget stepper motor
– Spec motor

• Multichannel Encoders (used for quick scans):

– Delta Tau PMAC multichannel encoder

• Multimeters

– Keithley 2400 series
– Keithley 2700 series

• Relays/Filters/Shutters:

– X-Ray Instrumentation Associates PFCU fil-
ter/shutter controller

• RS-232:

– Wago 750 RS-232 interface

• Sample Changers:

– ALS style sample changing robot

• Scans:

– Pseudomotor step scan

• Single Channel Analyzers:

– Oxford Danfysik Cyberstar X1000

• USB:

– Linux libusb interface

• VME:

– SIS1100/3100 PCI-to-VME bus interface

A couple of these will be discussed further below.



5

B. CCD Camera Control

It has become clear that many users do not want to
control some components of a beamline with one style of
user interface, while other parts are controlled by other
styles of user interfaces. For this reason, there is a sub-
stantial degree of interest in merging the entire user in-
terface of a beamline into one GUI. On macromolecular
crystallography beamlines, the system most affected by
this is CCD camera control. CCD cameras from a com-
mercial vendor generally come with their own custom
user interface that is specific to their systems. Thus,
in order to have a single interface, it is necessary to ei-
ther merge beamline control into the CCD camera GUI
or merge CCD camera control into the beamline control
GUI.

SER-CAT at the Advanced Photon Source has cho-
sen to integrate CCD camera control into their beam-
line control GUI. This has required, in turn, that MX
provide support for controlling the CCD camera. At
present, all of the CCD cameras at SER-CAT are sold
by MarUSA [17] which means that only one driver need
be written. This driver run from a copy of mxserver that
is started by a beamline staff member or user by selecting
remote operation from the MarCCD user interface. The
remote marccd driver makes use of the remote mode doc-
umented by MarUSA. Although the beamline user does
not need to use the MarCCD user interface after the MX
server is started, it is necessary that the MarCCD user
interface be running somewhere.

C. Sample Changing Robot

The ability to change samples under remote control has
now become very important to high throughput crystal-
lography experiments. SER-CAT is currently in the pro-
cess of installing a new sample changing robot based on
a design from the Advanced Light Source [18] . This has
prompted the development of a new MX device class for
sample changing robot control which has been success-
fully tested offline with the new robot. The current plan
is to integrate robot control into the new SER-CAT GUI
in the near future.

V. GRAPHICAL USER INTERFACE
DEVELOPMENTS

A variety of new MX-based graphical user interfaces
are currently in use or under development for both
macromolecular crystallography and materials science
experiments. A recurring theme in new crystallogra-
phy GUI development has been the use of the tabbed
notebook style of user interfaces popularized by the Blu
Ice system from SSRL. Another trend is that new MX
GUIs are tending to be developed in Python rather than
Tcl/Tk, since Python is perceived by many to be easier

to understand. We will discuss some of this in further
detail below.

A. Sergui

James Fait of SER-CAT is currently developing a new
WxPython-based MX crystallography interface called
sergui, some of the features of which have been touched
on in the previous section. This package is a very ambi-
tious and comprehensive user interface and is described
in much greater detail in another talk [19] at this confer-
ence.

B. Imcagui

The existing Tcl/Tk-based imcagui interface used at
IMCA-CAT has now been revised to make use of the
tabbed notebook format. The functionality of this new
version is largely the same as the old multiwindow inter-
face, but is perceived as being more user friendly than
the previous format. This remodeling of the user inter-
face has shown the virtue of the use of high level GUI
packages such as Tcl/Tk, [incr Tcl], and Iwidgets since
the amount of work required to implement this change
was relatively small. Our judgement is that this would
have been true as well if the original package had been
based on Python.

C. JDirector

IMCA-CAT has also implemented a new Java-based
GUI called JDirector [20] that has been designed and de-
veloped by Rigaku/MSC. The main interaction of this
system with MX is that JDirector’s beamline control in-
terface will soon be switching to a new Java interface to
MX that is to be written during the upcoming winter.
A Java interface to MX will also be valuable since many
new graduates from computer science programs are cur-
rently most familiar with Java.

D. Material Science GUIs

Ken McIvor of IIT is currently developing a set of new
WxPython-based materials science GUIs for MR-CAT.
A new GUI for control of an X-ray lithography system
has been in use for some time now at APS sector 10-BM,
with GUIs for XAFS and microfocussing under develop-
ment as well. In addition, Ken has developed a new MX
database editor that is designed to eliminate the need for
beamline staff to understand the format of MX database
files in great detail. We are looking forward to new de-
velopments by him.



6

VI. CONCLUSIONS

It is clear that MX has made a substantial amount
of progress since the last NOBUGS meeting in 2002. A
variety of new applications and drivers are now available
and the performance of the newest releases of MX are
significantly higher than before. We also look forward
to making the large package of MX drivers available for
other control systems such as EPICS and Spec.

The author wishes to acknowledge the help and sup-
port of many people in the development of MX. In par-
ticular, I would like to acknowledge Lisa Keefe and Irina
Koshelev of IMCA-CAT, Carlo Segre, Bruce Bunker,
Jeff Terry, and Jeremy Kropf of MR-CAT, John Chrzas,
James Fait, and Gerd Rosenbaum of SER-CAT, Andy
Howard and Ken McIvor of IIT, Nadia Leyarovska of
Argonne National Laboratory, and Henry Bellamy of
CAMD.

I would also like to acknowledge the various organiza-
tions that helped fund this work. Use of the IMCA-CAT
beamlines 17-ID and 17-BM at the Advanced Photon
Source were supported by the companies of the Industrial
Macromolecular Crystallography Association through a
contract with Illinois Institute of Technology. Work per-
formed at MRCAT is supported, in part by funding
from the Department of Energy under grant number DE-
FG02-04ER46106. Use was made of the Southeast Re-
gional Collaborative Access Team (SER-CAT) 22-ID and
22-BM beamlines at the Advanced Photon Source, Ar-
gonne National Laboratory. Supporting institutions may
be found at http://www.ser-cat.org/members.html. Use
of the Advanced Photon Source was supported by the
U. S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, under Contract No. W-31-109-
Eng-38.

[1] W. M. Lavender, “MX: A Portable Toolkit for Data Ac-
quisition and Control”, NOBUGS 1997 workshop, Ar-
gonne National Laboratory (1997) at http://www.aps.

anl.gov/xfd/bcda/nobugs/welcome.new1.html.
[2] W. M. Lavender, “MX: A Portable Toolkit for Dis-

tributed Data Acquisition and Control”, NOBUGS 2000
workshop, Daresbury Laboratory (2000) at http://srs.
dl.ac.uk/nobugs/nobugs3/.

[3] W. M. Lavender, “Materials Science and Protein Crys-
tallography Using the MX Beamline Control Toolkit”,
NOBUGS 2002 workshop, National Institute of Stan-
dards and Technology (2002) at ???.

[4] W. M. Lavender, “MX: A Beamline Control Sys-
tem Toolkit”, Synchrotron Radiation Instrumentation:
Eleventh US National Conference, AIP Conf. Proc. 521,
332 (2000).

[5] http://ixs.csrri.iit.edu/mrcat/
[6] C. U. Segre, N. E. Leyarovska, L. D. Chapman, W. M.

Lavender, P. W. Plag, A. S. King, A. J. Kropf, B. A.
Bunker, P. Dutta, R. S. Duran, J. Kaduk, “The MR-
CAT Insertion Device Beamline at the Advanced Pho-
ton Source”, Synchrotron Radiation Instrumentation:
Eleventh US National Conference, AIP Conf. Proc. 521,

419 (2000).
[7] http://www.imca.aps.anl.gov/
[8] J. F. Fait, W. M. Lavender, “Data Collection at the

IMCA Beamlines”, American Crystallographic Associa-
tion Annual Meeting, 59 (1999).

[9] L. J. Keefe, J. Chrzas, J. L. Rios-Steiner, K. S. McCarthy,
W. Lavender, K. J. Kim, A. J. Howard, “The User Pro-
gram of the Industrial Macromolecular Crystallography
Association CAT”, American Crystallographic Associa-
tion Annual Meeting, (2001).

[10] http://www.ser-cat.org/
[11] http://www.aps.anl.gov/epics/
[12] http://www.certif.com/
[13] http://www.esrf.fr/???
[14] somewhereatSSRL
[15] somewhereatAPS
[16] http://www.xia.com/
[17] MarUSAreference
[18] ALS robot reference.
[19] Sergui reference
[20] JDirector reference


