Materials Science and Protein Crystallography Using the MX Beamline Control Toolkit

William M. Lavender

Illinois Institute of Technology Chicago, Illinois 60616

http://www.imca.aps.anl.gov/mx/ lavender@imca.aps.anl.gov

Plan of the Talk

- Review of MX
- XIA multichannel analyzer support
- MCS quick scan support
- Performance
- Protein crystallography
- New beamlines
- MX as device support for EPICS

What is MX?

- A portable beamline control toolkit: *Linux, Solaris, Irix, Windows, MacOS X, Cygwin, etc.*
- Designed as middleware.
- Comes with a set of servers and clients.
- Has an extensive set of device drivers: 53 motor and pseudomotor drivers, with over 250 drivers altogether.
- Easy to interface to other people's drivers.
- Easy to embed in other applications and servers.

Current Users of MX

- MR-CAT, APS Sector 10-ID *materials science*
- IMCA-CAT, APS Sector 17-ID and 17-BM *macromolecular crystallography*
- SER-CAT, APS Sector 22-ID and 22-BM *macromolecular crystallography*
- DND-CAT, APS Sector 5-BM macromolecular crystallography
- GCPCC, CAMD macromolecular crystallography

MX Portability

MX provides a way to write beamline applications that are independent of the underlying control system.

MX has been used with:

- Beamlines using only EPICS-controlled devices.
- Beamlines that do not use EPICS at all.
- Beamlines with a mix of EPICS and non-EPICS devices.
- Beamlines using other network protocols like SCIPE.
- Beamlines using vendor provided Windows DLLs.

XIA Multichannel Analyzer Support

- MX now supports the DXP-2X and Saturn MCAs from X-ray Instrumentation Associates.
- DXP-2X: A CAMAC-based MCA with 4 MCA channels per module.
- Saturn (X10P): A parallel port-based MCA.
- A Windows 98-based MX server controls the MCAs via the XIA-provided Xerxes library.
- The DXP-2X has been used by MRCAT at input count rates of up to 1.5 million counts per second per channel.

MCS Quick Scans

- MX now supports quick scans that use a multichannel scaler to buffer the data.
- Struck SIS 3801 is supported via either EPICS or directly.
- The SIS 3801 sample interval ranges from 1 µsec to 1.67 sec using its internal clock.
- It can record up to 128 K samples that can be divided between scalers as necessary.
- When used via EPICS, each scaler can have up to 4000 measurements.
- When used directly, there is no limit other than the FIFO size.

MCS Quick Scans (cont.)

- At MR-CAT, most XAFS and diffraction measurements not using an MCA are now done via quick scans.
- SER-CAT and IMCA-CAT plan to use quick scans to minimize radiation damage to crystallography samples.
- Quick scans can also use an external pulse generator as a clock instead of the internal MCS clock.
- The XIA DXP-2X MCA now has support for internal buffering of region of interest (ROI) integrals.
- MR-CAT plans to use this to measure up to 208 MCA ROI integrals per point of a quick scan.

Performance

- MX development until recently has focused on implementing necessary beamline functionality.
- Now we need to improve the performance of the control system.
- The biggest improvements are likely to be found by improving the efficiency of network communication.
- We plan to focus on improving network performance over the next several months.
- We will also explore using MX drivers in an EPICS Channel Access server.
- Perceived performance of user interfaces is also important.

Protein Crystallography with MX

MX has fairly mature support for protein crystallography related beamline control:

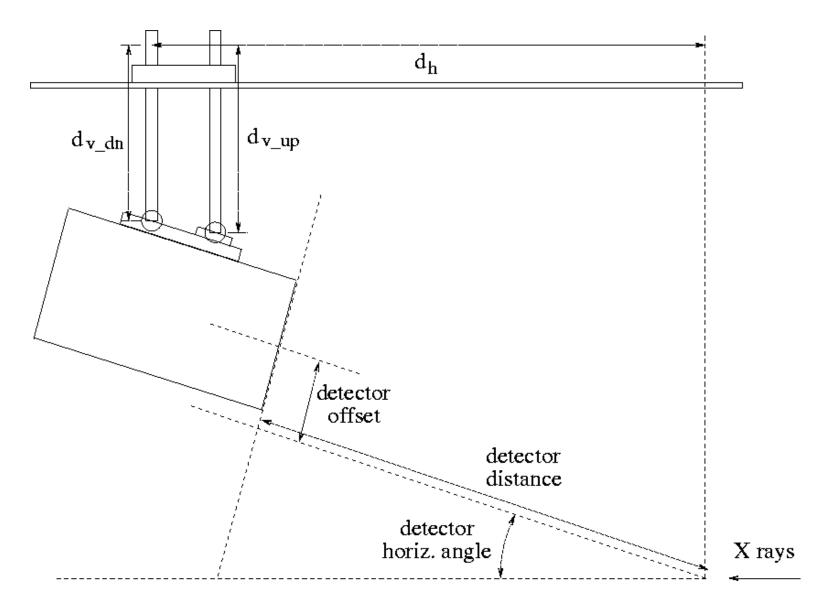
- Wavelength control
- Slit and filter control
- Fluorescence scans
- MAD experiment setup
- Beamline intensity optimization
- Vendor goniostat and beamline interfaces for Mar, ADSC, and Bruker.

Imcagui Main Window

Krie SER_C File Edit \	AT Secto Variables			ne Co	ontra	• 🗆 🗙 Help
	Current		Desired			
Energy 12398.500 eV e				eV		
Wavelength 1.0000 A				A	Mov	B
Gap Energy	12498.68	7 eV				
Undulato Harmoni		Monoch d Spa	Contraction of the second second second	1.920	016 A	
Slits: Slit Sizes Slit Positions					ns	
	Current	Desired	Current	D	esired	
Vertical	99.960		0.0	00		um
Horizontal	99.960		0.0	00		um
	Change	Sizes	Change	e Posit	ions	
Atten	uation: Q	irrent D	esired			
Foil Tr	nickness <mark>O</mark>	foils 0	foils	Char	nge	
	Opt	timize Inter	nsity			
		Message	Log			
*** IMCA GUI Reading data Database suc Reading data Database suc *** SER-CAT	cessfully base '/opt cessfully	/mx/etc/m read. /mx/etc/i read.	mcagui.da	at'	Complet	;e ***

MAD Experiments with Imcagui

— –🛪 Spectroscopy & MAD Data Collection Setup						
Help						
Experiment Type MAD						
Periodic Table of the Elements Element Se Element Se V L1 V L2 V L2 V L3 V V V V V V V V V V V V V V V V V V V						
Fluorescence Detector Saturation Test: Start Test						
Scan Fluorescence - Mount Sample Standard - Output Directory /usr/people/lavender Browse						
Run Scan Input Scan File /usr/people/lavender/Se_ Browse Calculate f', f''						
Four - Wavelengths: Peak Edge Low High						
Wavelength: 0.9793088 A 0.979445 A 0.983227597 A 0.975875635 A Energy: 12660.46 eV 12658.7 eV 12610 eV 12705 eV f': -8.68 -10.46 -5.109 -4.867 f'': 5.94 3.6 0.5 4.04						
Print Window Close						


New Beamlines

- MX is now in use at several new beamlines: SER-CAT, DND-CAT, and GCPCC.
- Most of my recent crystallography development has been done for SER-CAT.
- DND-CAT and GCPCC have been relatively self supporting.

MX at SER-CAT

- SER-CAT is using Delta Tau Turbo PMACs for motor control.
- Struck VME modules are used for counter/timer support through PCI-to-VME bus interfaces.
- EPICS is only used for undulator control.
- Implemented distance, angle, and offset pseudomotors for the A-frame CCD detector support.
- Implemented MX pseudodevices for downstream BPM readout.
- Implemented beamline and goniostat interfaces for the MarCCD and Bruker Proteum CCD systems.
- SER-CAT is now making plans for increased beamline automation.

SER-CAT A-frame Detector Support

Future Plans for Crystallography

- Interfacing to robotic sample changing systems.
- Closer integration with area detector control systems.
- Batch mode sample processing.
- Remote control of data acquisition across the Internet.

MX as EPICS Device Support

- MX is designed to be easily embeddable in other applications or servers.
- EPICS IocCore has now been ported to Linux, Solaris, Win32 and RTEMS, but few device drivers exist yet.
- I plan to use the MX library and drivers as device support for EPICS.
- Code to use MX motor drivers from the EPICS motor record is currently under development.
- This will let MEDM be used to construct MX GUIs.
- It will also allow MX drivers to be used from Spec.

Acknowledgements

A. Howard IMCA-CAT. IIT L. Keefe IMCA-CAT. IIT I. Koshelev **IMCA-CAT, IIT** C. Segre MR-CAT. IIT MR-CAT. IIT J. Terry J. Kropf MR-CAT, Argonne H. Tostmann MR-CAT, U. Florida B. Bunker MR-CAT. Notre Dame J. Fait SER-CAT, U. Georgia **J.** Chrzas SER-CAT, U. Georgia SER-CAT, U. Georgia N. Leyarovska G. Rosenbaum SER-CAT, U. Georgia

J. Quintana S. Weigand H. Bellamy M. White G. Bunker R. Alkire K. Lazarski T. Mooney R. Sluiter E. Westbrook R. Fischetti S. Stepanov DND-CAT, Northwestern DND-CAT, Northwestern GCPCC, CAMD GCPCC, UTMB IIT SBC-CAT, Argonne SBC-CAT, Argonne APS, Argonne APS, Argonne MBC GMCA-CAT GMCA-CAT