
MX Programmer’s Guide
for MX 1.6.0

William M. Lavender

December 10, 2012

2

MX has been developed by the Illinois Institute of Technology and is available under the following MIT X11 style
license.

Copyright 1999 Illinois Institute of Technology

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL ILLINOIS INSTITUTE OF TECHNOLOGY BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Illinois Institute
of Technology shall not be used in advertising or otherwise to promote
the sale, use or other dealings in this Software without prior written
authorization from Illinois Institute of Technology.

Contents

I Introduction 7
0.1 Programming Model . 9

II C Application Programming Summary 11

1 API Introduction 13

2 Common Functions 15
2.1 MX Record Functions . 15

2.1.1 Setting up an MX database . 15
2.1.2 Finding a record in the database . 15
2.1.3 Displaying the status of a record . 15
2.1.4 Setting up an MX database (the long way) . 15
2.1.5 Shutting down an MX database . 16
2.1.6 Creating a single MX record . 16
2.1.7 Creating a record description from a current MX record . 16
2.1.8 Destroying a single MX record . 16
2.1.9 Communication error recovery . 16

2.2 MX Network Functions . 17
2.2.1 Socket functions . 17
2.2.2 MX Network I/O . 17
2.2.3 Foreign Control Systems . 20

2.3 MX Utility Functions . 20
2.3.1 Array allocation . 20
2.3.2 Clock functions . 21
2.3.3 Coprocess handling functions . 21
2.3.4 Delay functions . 21
2.3.5 Handle table functions . 21
2.3.6 Log file support . 22
2.3.7 Math functions . 22
2.3.8 String functions . 22
2.3.9 Syslog support . 23
2.3.10 Version number reporting functions . 23
2.3.11 Miscellaneous utility functions . 23

3

4 CONTENTS

2.4 User I/O Functions . 23
2.4.1 Keyboard handling functions . 23
2.4.2 User interrupt functions . 24
2.4.3 Debugging functions . 24
2.4.4 Information display functions . 24
2.4.5 Warning message functions . 25
2.4.6 Error reporting functions . 25

3 Device API 27
3.1 MX Amplifier Functions . 27
3.2 MX Analog Input Functions . 27
3.3 MX Analog Output Functions . 28
3.4 MX Area Detector Functions . 28

3.4.1 Image size and format functions . 28
3.4.2 Image correction functions . 29
3.4.3 Imaging sequence functions . 29
3.4.4 Aviex-specific sequence types . 30
3.4.5 Trigger configuration functions . 30
3.4.6 Image acquisition functions . 31
3.4.7 Image setup and transfer functions . 31
3.4.8 ROI functions . 32

3.5 MX Autoscale Functions . 32
3.6 MX CCD Functions . 33
3.7 MX Digital Input Functions . 33
3.8 MX Digital Output Functions . 33
3.9 MX Encoder Functions . 33
3.10 MX Multichannel Analyzer Functions . 34

3.10.1 Counting Functions . 34
3.10.2 Data Handling Functions . 34
3.10.3 Parameter Setting Functions . 35
3.10.4 Soft ROI Functions . 35
3.10.5 Energy Scale Functions . 36

3.11 MX Multichannel Encoder Functions . 36
3.12 MX Multichannel Scaler Functions . 36

3.12.1 Counting Functions . 36
3.12.2 Data Handling Functions . 36
3.12.3 Parameter Setting Functions . 37

3.13 MX Motor Functions . 37
3.13.1 Motor status functions . 37
3.13.2 Alternate motor status functions . 38
3.13.3 Motor motion functions . 38
3.13.4 Motor abort functions . 38
3.13.5 Setting the motor position . 38
3.13.6 Home search . 38
3.13.7 Continuous moves . 38
3.13.8 Motor speeds . 39

CONTENTS 5

3.13.9 Motor acceleration . 39
3.13.10 Pseudomotor position calculation functions . 39
3.13.11 Scan related functions . 40
3.13.12 Getting and setting other motor parameters . 40

3.14 MX Relay Functions . 40
3.15 MX Scaler Functions . 40

3.15.1 Preset time functions . 40
3.15.2 Preset count functions . 40
3.15.3 Counter mode functions . 41
3.15.4 Dark current functions . 41

3.16 MX Table Functions . 41
3.17 MX Timer Functions . 41

3.17.1 Preset time functions . 41
3.17.2 Preset count functions . 42
3.17.3 Timer mode functions . 42

4 Interface API 43
4.1 MX CAMAC Functions . 43
4.2 MX GPIB Functions . 43
4.3 MX Portio Functions . 44
4.4 MX RS-232 Functions . 44
4.5 MX Generic Interface Functions . 45

5 MX Variable Functions 47
5.1 Generic variable functions . 47
5.2 One-dimensional variable functions . 47
5.3 Scalar variable functions . 47

6 Server API 49
6.1 MX Server Functions . 49

7 MX Scan Functions 51
7.1 Scan driver functions . 51
7.2 Measurement driver functions . 52
7.3 Data file driver functions . 53

7.3.1 Data file handling functions . 53
7.3.2 Data file version number functions . 53

7.4 Plot driver functions . 53

6 CONTENTS

Part I

Introduction

7

0.1. PROGRAMMING MODEL 9

The MX control system toolkit can be used as a standalone data acquisition and control system or as a uniform
API for connecting to other control system. The core of MX (libMx, mxserver, mxmotor, etc.) is written in C.
However, MX also provides programming APIs for a few other languages. The best supported language is Python
(Python 2.x for now), which supports most of the important MX APIs in a more object-oriented fashion. There is also
an older Tcl-based API (usingfor a subset of MX, but the TCL API is not currently being worked on.

The programmer’s guide only directly covers the C language API. However, the scripting APIs (Python, Tcl)
generally provide one-to-one mappings of object methods onto the lower level C functions, so this C language guide
should give you insight into how to use the similarly named Python methods.

This guide does not provide details of the function call signatures. The idea is to give a high level summary of all
of what is available, so that you can then look in the mx *.h header files for the function arguments. The header file
prototypes do try to give descriptive names for each of the function arguments.

0.1 Programming Model
The libMx uses a quasi-object oriented C-based API. The primary object of MX is the C structure MX RECORD.
MX RECORDs are used to contain information about all of the devices being managed by an MX database such as
motors, scalers, timers, multichannel analyzers, CCD/CMOS area detectors, RS-232 ports, USB devices, etc.

10

Part II

C Application Programming Summary

11

Chapter 1

API Introduction

The C language application programming interface (API) for MX is defined by the header files in the mx/libMx
directory of the source distribution with names of the form mx *.h. In these files, any function declared using
the macro MX API is intended to be available to normal user programs. Functions declared in these header files
using the macro MX API PRIVATE are not intended for use by typical user programs. For a binary distribution of
MX installed at /opt/mx, these files are found in the directory /opt/mx/include. There are other header files in the
mx/libMx directory with names like d *.h, i *.h, and so forth, but they are mostly intended to be used by MX device
drivers.

13

14 CHAPTER 1. API INTRODUCTION

Chapter 2

Common Functions

2.1 MX Record Functions

2.1.1 Setting up an MX database
mx setup database() - A simplified MX startup routine that reads an MX database file and then automatically ini-

tializes all the hardware connections. Many application programs will only need to call this one function at
startup time to be ready to use MX controlled devices.

2.1.2 Finding a record in the database
mx get record() - Used to find a record in the database by its name.

2.1.3 Displaying the status of a record
mx print structure() - Writes a formatted report of the status of the record to the supplied FILE pointer.

Most simple programs will only use the preceding three functions to manipulate a running MX database. However,
if the programmer wants more control over the setting up and shutting down of the database, the following lower level
functions are also available.

2.1.4 Setting up an MX database (the long way)
An MX database can also be set up by using the following lower level functions essentially in the order show.
mx setup database() itself is implemented by calling these functions.

mx initialize drivers() - Initializes all of the MX device drivers.

mx initialize record list() - Creates an empty MX record list.

mx read database file() - Reads an MX database file and adds the listed MX records to the running database.

mx finish database initialization() - Performs MX database initialization steps that can only be performed after all
of the records in the database have been created.

15

16 CHAPTER 2. COMMON FUNCTIONS

mx initialize hardware() - Makes the original connections to the control system hardware and initializes the de-
vices.

2.1.5 Shutting down an MX database
Often, an MX client that does not need to preserve a local copy of database parameters can simply call exit() when
it finishes running. However, if preserving the local copies is required or if devices that need careful shutdown are in
use, the following functions are available.

mx write database file() - Writes some or all of the MX records out to an MX database file.

mx shutdown hardware() - Shuts down the connections to the control system hardware.

2.1.6 Creating a single MX record
mx create record from description() - Uses a character string description of an MX record to create the data struc-

tures for the record in the running database.

mx finish record initialization() - Finishes setting up the data structures for the new record.

mx open hardware() - Makes the initial connection to the hardware controlled by this record.

mx write parms to hardware() - Writes initial device settings to the hardware.
(This function is deprecated. Use mx open hardware() instead.)

2.1.7 Creating a record description from a current MX record
mx create description from record() - Creates a character string description of the record in the format used by

MX database files.

2.1.8 Destroying a single MX record
mx read parms from hardware() - Reads device settings from the hardware.

(This function is deprecated. Use mx close hardware() instead.)

mx close hardware() - Shuts down the connection to the hardware.

mx delete record() - Deletes the record. mx close hardware() should be performed first to shutdown the associated
hardware.

2.1.9 Communication error recovery
mx resynchronize record() - This function attempts to resynchronize communication with a hardware controller. It

is intended for use when errors from other functions indicate that the handshake between MX and the remote
controller is out of sync. For example, this would be used to resynchronize an RS-232 connection if somehow
a few characters were lost.

There are a number of other MX functions that operate on generic records, but they are less commonly used and
are not mentioned in this summary. However, they will be described in the API reference document.

2.2. MX NETWORK FUNCTIONS 17

2.2 MX Network Functions

2.2.1 Socket functions
At present, TCP sockets and Unix domain sockets are supported.

mx socket open as client() - Makes a client connection to a TCP server.

mx socket open as server() - Creates a server TCP socket that is ready for connections from clients.

mx socket close() - Closes an already open TCP socket.

mx socket is open() - Checks to see if the specified socket corresponds to an open connection.

mx socket mark as closed() - Replaces the socket value with a value that indicates that this is an invalid socket.

mx socket get last error() - Gets the error code corresponding to the last socket error. This returns either errno or
WSAGetLastError() depending on the operating system platform.

mx socket strerror() - Returns the error text corresponding to a given socket error code.

mx socket check error status() - Socket related functions may return any of three different kinds of values for
indicating an error, namely NULL, 0, or -1 (INVALID SOCKET on Win32). This function figures out whether
the value returned by a socket function corresponds to an error or not.

mx socket get inet address() - Converts a character string hostname to a numerical internet address represented as
an unsigned long.

2.2.2 MX Network I/O
The MX network I/O functions are used by a number of MX device drivers to communicate with devices controlled
by a remote MX server. Examples of such drivers include the network motor, network scaler, network scaler, net-
work mca, network rs232, and network gpib drivers. However, the underlying functions can be used if you want to
directly modify individual record fields in a remote MX server.

2.2.2.1 Network Server Functions

In order to use the API for MX network I/O, you must have a pointer to the MX server record that manages the con-
nection to the remote server. If you have started an MX database using one of the variants of mx setup database(),
then all you need to know is the name of the server record. For example, if you know that the server is named
mono server in the running database, then all you have to do is something like this:

...
server_record = mx_get_record(record_list, "mono_server");
...

If you know the server’s hostname and port number, but are not running an MX database, then you can use
mx connect to mx server() to start a new MX database with a predefined server record. In this case, you have to do
something like this:

18 CHAPTER 2. COMMON FUNCTIONS

...
mx_status = mx_connect_to_mx_server(&server_record,
"server.example.com", 9727, 8);
...

where 9727 is the remote port number (this is the standard MX port number), and 8 is the default display precision
used to format floating point numbers from MX.

2.2.2.2 Network Fields

The MX network API makes use of MX network field structures. The MX NETWORK FIELD structure is defined
in a manner equivalent to this:

typedef struct {
char nfname[MXU_RECORD_FIELD_NAME_LENGTH+1];
MX_RECORD *server_record;
long record_handle;
long field_handle;

} MX_NETWORK_FIELD;

The members of this structure are

nfname - This is an ASCII representation of the record field name in the remote MX server. An example of this
would be theta.position.

server record - This is a pointer to an MX RECORD in the currently running database that manages the connection
to a remote MX server. Typically, this will be a record of type tcpip server or unix server.

record handle - This is a 32-bit integer that uniquely identifies the record specified by nfname in the remote MX
server.

field handle - This is a 32-bit integer that uniquely identifies the field specified by nfname in the remote MX server.

The combination of a record handle with a field handle is typically referred to collectively as an MX network field
handle.

2.2.2.3 Network Handle Functions

The following are the preferred network handle functions.

mx network field init() - This function initializes the server record and the nfname members of the MX NETWORK FIELD
structure. The record handle and field handle members are not initialized here. Instead, they are initialized by
a record handle and field handle lookup procedure in the server that is performed during the first time that the
MX NETWORK FIELD structure is used by one of the family of mx get() and mx put() functions described
below. On subsequent calls, the network API functions use the already cached record and field handles.

mx network field connect() - Performs an immediate lookup of the record and field handles. Normally, calling this
function directly is not necessary, since it will automatically be invoked when needed by the functions below.

mx get() - Reads a single value from a remote MX server using the specified MX network field.

2.2. MX NETWORK FUNCTIONS 19

mx put() - Writes a single value to a remote MX server using the specified MX network field

mx get array() - Reads a multidimensional array from a remote MX server using the specified MX network field.

mx put array() - Writes a multidimensional array to a remote MX server using the specified MX network field.

There are also older non-handle versions of these functions such as mx get by name(), but those functions should
be avoided since they perform a record handle lookup and field handle lookup for each and every call.

2.2.2.4 Examples of MX Network I/O

Here is an example of using these functions to read the current position of the motor θ.

...
MX_NETWORK_FIELD nf;
...
server_record = mx_get_record(record_list, "mono_server");

mx_status = mx_network_field_init(&nf, server_record, "theta.position");

mx_status = mx_get(nf, MXFT_DOUBLE, &theta_position);

fprintf(stderr, "The current position of theta = %g degrees\n",
theta_position);
...

For a real program, you would need to check the return values from each of the functions above.
Here is a similar example of writing to the 2-dimensional network field controller.params.

...
MX_NETWORK_FIELD nf;
long dimension[2];
long params_array[3][2];
...
server_record = mx_get_record(record_list, "mono_server");

mx_status = mx_network_field_init(&nf, server_record, "controller.params");

for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {

params_array[i][j] = 10 * i + j;
}

}

dimension[0] = 2;
dimension[1] = 3;

mx_status = mx_put_array(nf, MXFT_LONG, 2, dimension, params_array);

...

20 CHAPTER 2. COMMON FUNCTIONS

2.2.3 Foreign Control Systems
2.2.3.1 EPICS

The following functions provide a client-side interface to EPICS Channel Access. They have been repackaged such
that they return standard MX status structures.

mx caget() - Gets a process variable from an EPICS IOC.

mx caput() - Sends a process variable to an EPICS IOC and waits until the data transfer is complete.

mx caput nowait() - Sends a process variable to an EPICS IOC without waiting for the data transfer to be complete.

mx epics get debug flag() - Finds out whether or not MX debugging of EPICS channel access I/O is turned on.

mx epics set debug flag() - Turns on or off MX debugging of EPICS channel access I/O.

These functions convert the integer flags used to stand for individual data types between MX data types and either
EPICS Channel Access data types or EZCA data types.

mx epics convert mx type to epics type()

mx epics convert epics type to mx type()

mx epics convert mx type to ezca type()

mx epics convert ezca type to mx type()

The following functions support EPICS groups.

mx epics start group() - Starts an EPICS synchronous group.

mx epics end group() - Ends an EPICS synchronous group.

mx epics delete group() - Deletes an existing synchronous group.

mx group caget() - Queues up an EPICS caget to be performed when the group is ended.

mx group caput() - Queues up an EPICS caput to be performed when the group is ended.

2.3 MX Utility Functions

2.3.1 Array allocation
mx allocate array() - Allocate a multi-dimensional array composed either of intrinsic types like long, double, etc.,

or of C structures.

mx free array() - Frees a multi-dimensional array allocated by mx allocate array()].

mx array add overlay() - This function takes a 1-dimensional data buffer and constructs a multidimensional array
on top of it. This will only work correctly if the 1-dimensional buffer contains values in row rank order using
standard C conventions.

mx array free overlay() - This function frees the overlay array created by mx array add overlay(), but does not
free the 1-dimensional buffer.

2.3. MX UTILITY FUNCTIONS 21

2.3.2 Clock functions
The following clock tick handling functions are used by the MX server for the scheduling of events. They use
operating system dependent functions like times() on several versions of Unix or timeGetTime() on Win32. Clock tick
values are represented using the MX CLOCK TICK C structure.

mx clock ticks per second() - Reports the number of clock ticks per second.

mx initialize clock ticks() - Performs any operating system dependent initialization required for handling operating
system clock ticks.

mx current clock tick() - Gets the current time in units of clock ticks.

mx convert seconds to clock ticks() - Converts a time interval in seconds into the equivalent number of clock ticks.

mx convert clock ticks to seconds() - Converts a time interval in clock ticks into the equivalent number of seconds.

mx add clock ticks() - Since MX CLOCK TICK is a C structure, a function is required to add two clock tick values.

mx subtract clock ticks() - Subtracts one clock tick value from another.

mx compare clock ticks() - Reports whether a given clock tick value corresponds to an earlier or a later time than
another clock tick value.

2.3.3 Coprocess handling functions
These functions create a coprocess connected to the current process by a pair of pipes. One pipe is used to send to the
coprocess and the other pipe is used to receive from the coprocess.

mx create coprocess() - Creates a coprocess using the specified command argv[] array.

mx kill coprocess() - Shuts down the coprocess.

2.3.4 Delay functions
The following functions implement programmable delays. Applications must be prepared for the possibility that the
delay may last longer than requested.

mx sleep() - Tells the operating system to pause the process for the requested number of seconds.

mx msleep() - Tells the operating system to pause the process for the requested number of milliseconds.

mx usleep() - Tells the operating system to pause the process for the requested number of microseconds.

2.3.5 Handle table functions
MX handles are integer numbers that are used as indices into a table of C pointers. This feature exists so that
programming languages that cannot directly manipulate MX objects using C pointers can refer to the objects via
handle numbers. MX network communications normally uses handles to refer to record fields in remote MX servers.

mx create handle table() - Creates a handle table of the specified size.

22 CHAPTER 2. COMMON FUNCTIONS

mx resize handle table() - Increases the size of an already existing handle table.

mx delete handle table() - Destroys a currently existing handle table.

mx create handle() - Adds a new handle to a handle table.

mx delete handle() - Removes an already existing handle from a handle table.

mx get handle from pointer() - Converts a handle into the corresponding C pointer.

mx get pointer from handle() - Converts a C pointer into the corresponding handle.

2.3.6 Log file support

mx log open() - Opens a log file.

mx log close() - Closes the log file.

mx log message() - Writes a message to the log file.

mx log timestamp() - Writes a timestamp to the log file.

2.3.7 Math functions

mx divide safely() - Divides one double value by another while testing for and avoiding division by zero.

mx difference() - Computes a relative difference function.

mx round() - Rounds a double value to the nearest long value.

mx round up() - This function rounds up to the next higher long value. A small threshold value is subtracted from
the number before rounding to prevent getting the wrong number due to previous roundoff errors.

mx round down() - This function rounds down to the next lower long value. A small threshold value is added to the
number before rounding to prevent getting the wrong number due to previous roundoff errors.

mx byteswap() - Swaps the low order and high order bytes of a 16 bit integer.

2.3.8 String functions

strlcpy() - A replacement for strncpy() that ensures that the string fits into the buffer and is NULL terminated.

strlcat() - A replacement for strncat() that ensures that the string fits into the buffer and is NULL terminated.

mx match() - Performs a simple wildcard match of a pattern to a string. It does not implement full regular expres-
sions.

mx skip string fields() - Skips over the requested number of fields in a character string that are separated by standard
MX record field separators (space, tab, newline).

2.4. USER I/O FUNCTIONS 23

2.3.9 Syslog support

mx install syslog handler() - Arranges for messages from MX output handlers to be sent to the Unix syslog dae-
mon. The output may be configured to be instead of or in addition to messages to stderr.

2.3.10 Version number reporting functions

These functions return information about the version of MX that is running.

mx get major version() - For MX version 1.4.1, this would return 1.

mx get minor version() - For MX version 1.4.1, this would return 4.

mx get update version() - For MX version 1.4.1, this would return 1.

mx get version date() - This returns the date of the last modification to the MX library such as “May 15, 2007”.

mx get version string() - This returns a complete version string for MX such as “MX version 1.4.1 (May 15, 2007)”.

2.3.11 Miscellaneous utility functions

mx free() - Calls free() and then makes sure that the pointer we just freed has been set to NULL.

mx username() - Returns the alphanumeric name of the current user.

mx get max file descriptors() - This finds out the maximum number of file descriptors that the current process is
allowed to use.

mx current time string() - Returns an alphanumeric representation of the current time. This is essentially the output
of ctime() with the newline at the end removed.

mx standard signal error handler() - This function is used by many MX programs to provide a standard response
to a program crash.

mx stack traceback() - This function does its best to provide a traceback of the function call stack at the time of
invocation. The stack traceback may be incorrect if the crash was messy enough to corrupt the stack frames.
This function is not supported on all MX platforms.

2.4 User I/O Functions

2.4.1 Keyboard handling functions

These functions are often used to allow user’s to interrupt long running operations.

mx getch() - Gets a single character from the user’s keyboard.

mx kbhit() - Checks to see if the user has typed a character on the keyboard.

24 CHAPTER 2. COMMON FUNCTIONS

2.4.2 User interrupt functions

mx user requested interrupt() - Checks to see if the user has requested to interrupt the operation that is currently
in progress.

mx set user interrupt function() - Can be used to check for user interrupts from an alternate source. Generally
used by GUIs to allow an “Abort” button to be set up.

mx default user interrupt function() - This is the default function used by mx user requested interrupt(). It
uses mx kbhit() and mx getch()].

2.4.3 Debugging functions

MX DEBUG() - A C macro that is used extensively to generate debugging messages. It uses a trick to get something
equivalent to a varargs macro since ANSI C does not explicitly support varargs macros. See the description in
libMx/mx util.h for more information.

mx set debug level() - Sets the current debugging level.

mx get debug level() - Gets the current debugging level.

mx set debug output function() - Can be used to redirect debugging output to an alternate destination. Generally
used by GUIs to capture the text.

mx debug default output function() - This is the default function used by MX DEBUG() output. It merely sends
the output to stderr.

2.4.4 Information display functions

mx info() - Displays an informational message to the user.

mx info dialog() - Displays an informational message to the user and waits for the user to acknowledge the message.
For text mode clients, the user hits a key on the keyboard, while for GUI clients, the user typically clicks on an
“OK” button.

mx set info output function() - Can be used to redirect informational output to an alternate destination. Generally
used by GUIs to capture the text.

mx info default output function() - This is the default function used by mx info() output. It merely sends the
output to stderr.

mx set info dialog function() - Can be used to redirect a user dialog to an alternate destination. Generally used by
GUIs to display a dialog box with an “OK” button.

mx info default dialog function() - This is the default function used by mx info dialog()]. It merely sends the
output to stderr and waits for the user to hit a key using mx kbhit().

2.4. USER I/O FUNCTIONS 25

2.4.5 Warning message functions
mx warning() - Displays an warning message to the user.

mx set warning output function() - Can be used to redirect warning messages to an alternate destination. Gener-
ally used by GUIs to capture the text.

mx warning default output function() - This is the default function used by mx warning() output. It merely sends
the output to stderr.

2.4.6 Error reporting functions
These functions use an mx status type structure which contains an error code, the name of the function that the error
occurred in, and a programmer specified error message.

mx error() - Used by most MX functions to report errors to the calling routine. It also displays an error message to
the user.

mx error quiet() - Used occasionally to report an error back to the calling routine without displaying an error mes-
sage to the user.

mx strerror() - Converts an MX error code to a verbose error description.

MX SUCCESSFUL RESULT - This is a macro that is used by MX functions to return a success status to the calling
routine. This almost always takes the form of “return MX SUCCESSFUL RESULT;” in the source code.

mx set error output function() - Can be used to redirect error messages to an alternate destination. Generally used
by GUIs to capture the text.

mx error default output function() - This is the default function used by mx error() output. It merely sends the
output to stderr.

26 CHAPTER 2. COMMON FUNCTIONS

Chapter 3

Device API

3.1 MX Amplifier Functions

mx amplifier get gain() - Get the amplifier gain.

mx amplifier set gain() - Set the amplifier gain.

mx amplifier get offset() - Get the amplifier offset in units of the output voltage.

mx amplifier set offset() - Set the amplifier offset in units of the output voltage.

mx amplifier get time constant() - Get the amplifier time constant in units of seconds.

mx amplifier set time constant() - Set the amplifier time constant in units of seconds.

mx amplifier get gain range() - Reports the minimum and maximum allowed gains for this amplifier.

3.2 MX Analog Input Functions

mx analog input read() - Reports the ADC value in user units.

mx analog input read raw long() - Returns the raw value from an ADC as a long integer.

mx analog input read raw double() - Returns the raw value from an ADC as a double value.

mx analog input get dark current() - Returns the MX ADC dark current as a double value. If the 0x1000 bit is
set in the analog input flags field, then this function returns the dark current per second.

mx analog input set dark current() - Sets the MX ADC dark current to the supplied double value. If the 0x1000
bit is set in the analog input flags field, then the supplied value is expected to be the dark current per second.

27

28 CHAPTER 3. DEVICE API

3.3 MX Analog Output Functions

mx analog output read() - Reads the setpoint for a DAC in user units.

mx analog output write() - Write to a DAC in user units.

mx analog output read raw long() - Reads the raw setpoint for a DAC as a long integer.

mx analog output write raw long() - Sets the raw setpoint for a DAC to the supplied long integer.

mx analog output read raw double() - Reads the raw setpoint for a DAC as a double value.

mx analog output write raw double() - Sets the raw setpoint for a DAC to the supplied double value.

3.4 MX Area Detector Functions

3.4.1 Image size and format functions

mx area detector get image format() - Returns the currently configured image format of the area detector using
the MXT IMAGE FORMAT definitions from mx/libMx/mx image.h.

mx area detector get image format() - Changes the image format for the area detector using the MXT IMAGE FORMAT
definitions from mx/libMx/mx image.h. This function is not supported for many types of area detectors.

mx area detector get maximum framesize() - Returns the maximum allowed framesize for the area detector.

mx area detector get framesize() - Returns the current framesize for the area detector.

mx area detector set framesize() - Sets the current framesize for the area detector. If the requested framesize is
not available, the new framesize will be the nearest available framesize.

mx area detector get binsize() - Returns the current binsize for the area detector.

mx area detector set binsize() - Sets the current binsize for the area detector. If the requested binsize is not avail-
able, the new binsize will be the nearest available binsize.

mx area detector get bytes per frame() - Reports the number of bytes per frame for the current image size and
format.

mx area detector get bytes per pixel() - Reports the number of bytes per pixel for the current image format. This
number is not necessarily an integer.

mx area detector get bits per pixel() - Reports the number of bits per pixel for the current image format. This
number is not necessarily a multiple of 8.

3.4. MX AREA DETECTOR FUNCTIONS 29

3.4.2 Image correction functions
mx area detector get correction flags() - Returns a bitmap specifying which individual types of image corrections

are currently enabled.

mx area detector set correction flags() - Uses the supplied bitmap to determine which individual types of image
corrections are currently enabled.

mx area detector measure correction frame() - Measures the requested type of correction frame and leaves the
frame in the matching image buffer, ready to be used for corrections.

mx area detector measure dark current frame() - Acquires a dark current frame and places the frame in the dark
current correction image buffer.

mx area detector measure flood field frame() - Acquires a flood field frame and places the frame in the flood
field correction image buffer.

mx area detector get use scaled dark current flag() - Gets the current value of the use scaled dark current flag
field. If this flag is set, a dark current image acquired for a different measurement time can be used to correct
the image by rescaling the pixel values to match the current measurement time of the area detector.

mx area detector set use scaled dark current flag() - Assigns a new value to the use scaled dark current flag
field.

3.4.3 Imaging sequence functions
mx area detector get total acquisition time() - Returns the amount of time in seconds devoted to image acquisi-

tion in the currently configured image sequence.

mx area detector get total sequence time() - Returns the amount of time in seconds required to execute the cur-
rently configured image sequence.

mx area detector get detector readout time() - Returns the amount of time in seconds required to read out a sin-
gle image frame from the currently configured sequence.

mx area detector get sequence start delay() - For some area detectors, it is possible to configure a delay of the
start of a sequence. This function returns the value of that delay in seconds.

mx area detector get sequence parameters() - Returns a structure containing the currently configured image se-
quence for the area detector.

mx area detector set sequence parameters() - Reconfigures the area detector for the requested image sequence
parameters.

mx area detector set one shot mode() - Configures the area detector to acquire a single frame using either an
internal or an external trigger.

mx area detector set continuous mode() - Configures the area detector to acquire an unending sequence of image
frames into the same buffer until told to stop. The sequence can be started using either an internal or an external
trigger.

30 CHAPTER 3. DEVICE API

mx area detector set multiframe mode() - Configures the area detector to acquire the requested number of image
frames into a matching number of image buffers. The sequence can be started using either an internal or an
external trigger.

mx area detector set circular multiframe mode() - Configures the area detector to acquire an unending sequence
of image frames into the specified number of image buffers. When the last frame buffer is reached, the sequence
wraps around to overwrite the first frame buffer. The sequence can be started using either an internal or an
external trigger.

mx area detector set strobe mode() - Configures the area detector to acquire the requested number of image frames
into a matching number of image buffers. The sequence is driven by external trigger pulses. When the next
external trigger is received, the next image frame will be acquired.

mx area detector set bulb mode() - Configures the area detector to acquire the requested number of image frames
into a matching number of image buffers. The external trigger input is used as a gate signal. When the gate
is turned on, the area detector starts to acquire the next image in the sequence. The image acquisition for that
frame lasts until the gate is turned off. Then, the next frame will begin once the gate is turned back on.
Warning: For the AVIEX PCCD-170170 detector, this sequence mode can only run for 1 frame.

3.4.4 Aviex-specific sequence types

The Aviex PCCD-170170 area detector has three sequence types that are specific to it.

mx area detector set geometrical mode() - The first frame in the sequence is acquired using the specified exposure
time and the detector waits for the specified gap time before starting the next frame. On subsequent frames, the
exposure time and gap time for a given frame are those for the previous frame multiplied by an exposure time
multiplier and a gap time multiplier. The sequence can be started using either an internal trigger or an external
trigger.

mx area detector set streak camera mode() - In this mode, the area detector acquires a new single line of the
image using the requested exposure time for the requested number of lines. Once all the lines have been
acquired, the resulting data is returned as one long image. The sequence can be started using either an internal
trigger or an external trigger.

mx area detector set subimage mode() - In this mode, the full frame of the detector is broken up into several strips
called subimages which are each acquired at a different time. When all of the requested subimages have been
acquired, the resulting data is returned as one long image. The sequence can be started using either an internal
trigger or an external trigger.

3.4.5 Trigger configuration functions

mx area detector get trigger mode() - Reports whether the detector is configured for internal trigger mode or ex-
ternal trigger mode.

mx area detector set trigger mode() - Configures the detector for the requested choice of either internal trigger
mode or external trigger mode.

3.4. MX AREA DETECTOR FUNCTIONS 31

3.4.6 Image acquisition functions
This set of functions is used to control image acquisition and monitor the status of an imaging sequence.

mx area detector arm() - Makes sure that the area detector is ready to execute the previously requested sequence.
If the area detector is in external trigger mode, the sequence will start when the next external trigger arrives.

mx area detector trigger() - If the detector is in internal trigger mode, this function starts the imaging sequence.
If the detector is in external trigger mode, then this function does nothing.

mx area detector start() - This function is merely a convenience function that calls mx area detector arm() fol-
lowed by mx area detector trigger().

mx area detector stop() - If an imaging sequence is in progress, this function tells the area detector to end the
sequence when it has finished acquiring the current frame.

mx area detector abort() - If an imaging sequence is in progress, this function tells the area detector to end the
sequence as quickly as possible, even if this means losing the image frame currently being acquired.

mx area detector is busy() - The function reports whether or not an imaging sequence is in progress.

mx area detector get last frame number() - The function reports the number of the frame buffer containing the
most recently acquired frame. If the area detector is currently in continuous or circular multiframe mode, the
frame buffer number will wrap back to 0 when the sequence wraps back to the first frame buffer.

mx area detector get total num frames() - Reports the total number of frames acquired since the counter was
reset. Usually, this will either be the total number of frames acquired since the MX server was started or it will
be the total number of frames acquired since the computer booted.

mx area detector get status() - Reports the current detector status flags. In general, this will at least include the
busy flag.

mx area detector get extended status() - Reports the current detector status flags as well as the last frame number
acquired and the total number of frames acquired. For some area detectors, calling this function will be more
efficient than separately calling the individual functions listed above.

3.4.7 Image setup and transfer functions
mx area detector setup frame() - This function makes sure that an image buffer has been allocated that is large

enough to contain the next frame to be acquired. If the image buffer is already large enough, then this function
does nothing.

mx area detector readout frame() - On some systems, the image data is initially saved into an inaccessible buffer
either on the imaging board or in kernel memory belonging to the operating system. This function copies the
image frame data from the inaccessible system buffer into an MX controlled image buffer in the address space
of the MX process. If the initial frame buffer is in memory that is already controlled by MX, then this function
does nothing.

mx area detector correct frame() - This function performs the set of image corrections specified by the correction
flags bitmap.

32 CHAPTER 3. DEVICE API

mx area detector transfer frame() - Transfers the requested type of remote image frame to the local image frame
buffer. For network-based systems, this is the step that sends the image data across the network.

mx area detector load frame() - Tells the MX server to load the requested frame buffer from a file which is located
on the server.

mx area detector save frame() - Tells the MX server to save the requested frame buffer to a file which is located
on the server.

mx area detector copy frame() - Tells the MX server to copy image data from one internal frame buffer to another.
This is used for things like moving a recently acquired or loaded image frame to another buffer such as the dark
current frame or the flood field frame.

mx area detector get frame() - Transfers the contents of the requested frame number from the server to the sup-
plied MX IMAGE FRAME object.

mx area detector get sequence() - Transfers the contents of the requested number of image frames on the server to
the supplied MX IMAGE SEQUENCE object.

3.4.8 ROI functions
mx area detector get roi() - Returns the boundaries of the specified region of interest.

mx area detector set roi() - Sets the boundaries of the specified region of interest.

mx area detector get roi frame() - Transfers the contents of the requested ROI from the current image frame buffer
on the server to the supplied local MX IMAGE FRAME object.

3.5 MX Autoscale Functions
In MX, autoscale devices are pseudodevices used by the autoscale scaler device driver. Autoscaling scalers set upper
and lower limits on their count rate so that they can stay within the most linear part of their dynamic range.

If a string record with the specific namemx scan fault is defined, MX step scans will check after each step to see
if any scan faults have occurred. The contents of the string in the define what scan faults will be checked for. For
example, if mx scan fault contains the string “autoscale:I0”, this tells the scan that I0 is an autoscaling scaler and
that the scan should check for autoscale faults using that record.

An autoscale fault is declared if the measured intensity of the scaler is not within the upper and lower limits of the
scaler record. If the intensity is not between those limits, the autoscaling scaler tells its associated autoscale record
to make whatever changes to amplifier gains or inserted filters are necessary to bring the raw autoscaled value back
within the upper and lower limits. After this is done, the scan step is retried. If the measured intensity is still not
between the limits, then the autoscaling scaler will try making further changes to the gain and/or filter settings until
the fault is fixed or the maximum or minimum gain or filter settings are reached.

The autoscale record itself contains the logic required to implement the feedback control. You can find more
information about autoscale records and other associated records in the “Autoscale Related Pseudoscalers” section
and the “Autoscale Devices” chapter of the MX Driver Reference Manual. Those sections include examples of how
to set up the appropriate records in your MX database.

Here are the functions used by autoscale devices. The only reason for which you may need to know what these
functions do is if you plan to implement a new type of autoscale fault.

3.6. MX CCD FUNCTIONS 33

mx autoscale read monitor() -

mx autoscale get change request() -

mx autoscale change control() -

mx autoscale get offset index() -

mx autoscale set offset index() -

mx autoscale get offset array() -

mx autoscale set offset array() -

mx autoscale get limits() -

mx autoscale set limits() -

mx autoscale compute dynamic limits() -

FIXME - I need to refresh my memory of what all of these functions do.

3.6 MX CCD Functions
WARNING: The CCD class has been replaced by the new Area Detector class.
The existing remote marccd CCD driver will be replaced by a new marccd Area Detector driver at some point in the
near future.

3.7 MX Digital Input Functions
mx digital input read() - Read a digital input register.

3.8 MX Digital Output Functions
mx digital output read() - Read the output value for a digital output register.

mx digital output write() - Write to a digital output register.

3.9 MX Encoder Functions
mx encoder read() - Read the encoder position.

mx encoder write() - Write the encoder position.

mx encoder get overflow status() - Checks for overflow or underflow.

mx encoder reset overflow status() - Clears any overflow or underflow flags.

34 CHAPTER 3. DEVICE API

3.10 MX Multichannel Analyzer Functions

3.10.1 Counting Functions

mx mca start() - Starts the MCA counting.

mx mca stop() - Stops the MCA from counting.

mx mca start without preset() - Starts the MCA counting without a preset. The MCA will continue counting until
it is asked to stop.

mx mca start with preset() - Starts the MCA counting with a preset. You must specify the type of preset and a
value for the preset when you invoke this function.

mx mca start for preset live time() - Starts the MCA counting for a preset live time interval.

mx mca start for preset real time() - Starts the MCA counting for a preset real time interval.

mx mca start for preset count() - Starts the MCA counting until the preset count is reached in a user specified
window.

mx mca is busy() - Checks to see if the MCA is currently acquiring data.

mx mca is new data available() - Checks to see if the MCA spectrum has changed since the last time it was read.

3.10.2 Data Handling Functions

mx mca clear() - Clears the spectrum in the MCA.

mx mca read() - Reads the spectrum from the MCA.

mx mca get roi integral() - Gets the integrated counts from the MCA region of interest.

mx mca get roi integral array() - Gets an array containing the integrated counts of all regions of interest for the
MCA.

mx mca get channel() - Gets the value from the specified MCA channel.

mx mca get real time() - Get the MCA real time.

mx mca get live time() - Get the MCA live time.

mx mca get counts() - Gets the integrated number of counts within the MCA preset count window.

mx mca get input count rate() - Gets the input count rate in counts per second for the MCA.

mx mca get output count rate() - Gets the output count rate in counts per second for the MCA.

3.10. MX MULTICHANNEL ANALYZER FUNCTIONS 35

3.10.3 Parameter Setting Functions

mx mca get parameter() - Reads the value of one or more MCA parameters from the controller.

mx mca set parameter() - Sets the value of one or more MCA parameters in the controller.

mx mca get preset type() - Gets the type of preset used by the MCA.

mx mca set preset type() - Sets the type of preset used by the MCA.

mx mca get preset count region() - Gets the boundaries of the current preset count region of the MCA.

mx mca set preset count region() - Sets the boundaries of the preset count region of the MCA.

mx mca get roi() - Gets the boundaries of the specified MCA region of interest.

mx mca set roi() - Sets the boundaries of the specified MCA region of interest.

mx mca get roi array() - Gets the boundaries of all regions of interest for the MCA.

mx mca set roi array() - Sets the boundaries of all regions of interest for the MCA.

mx mca get num channels() - Gets the number of channels to be used by the MCA.

mx mca set num channels() - Sets the number of channels to be used by the MCA.

3.10.4 Soft ROI Functions

The soft ROI functions are used to provide an alternate way of implementing region of interest functionality for
multichannel analyzers. Soft ROIs do not depend on the presence of hardware ROIs in the MCA. Instead, the ROI
integrals are computed within the associated MX driver itself. Typically, this will be used for MCAs that do not
provide hardware ROIs. However, there is nothing stopping you from using soft ROIs with MCAs that also have
hardware ROIs. For example, you may want to do this if the hardware only has one hardware ROI, but you want more
than one ROI for your measurement. Typically, the processing of soft ROIs will be slower than that for hardware
ROIs since the entire MCA spectrum must be read into the MX driver, so that the MX driver can compute the integral
itself.

Keep in mind that the hardware ROIs and the software ROIs have no connection to each other. For example, in
general, hardware ROI 4 will have different limits and a different integral from software ROI 4.

mx mca get soft roi() - Gets the boundaries of the specified software region of interest.

mx mca set soft roi() - Sets the boundaries of the specified software region of interest.

mx mca get soft roi integral() - Gets the integrated counts from the software region of interest.

mx mca get soft roi integral array() - Gets an array containing the integrated counts of all software regions of
interest for the MCA.

36 CHAPTER 3. DEVICE API

3.10.5 Energy Scale Functions

These functions can be used to handle the MCA X axis in units of energy rather than channel number.

mx mca get energy scale() - Gets the scale factor for converting from MCA channel number to energy.

mx mca set energy scale() - Sets the scale factor for converting from MCA channel number to energy.

mx mca get energy offset() - Gets the offset for converting from MCA channel number to energy.

mx mca set energy offset() - Sets the offset for converting from MCA channel number to energy.

mx mca get energy axis array() - Returns an array that contains the energy corresponding to each MCA channel
number.

3.11 MX Multichannel Encoder Functions

mx mce read() - Reads the position values from a multichannel encoder.

mx mce get overflow status() - Checks to see if the MCE has overflowed.

mx mce reset overflow status() - Clears the overflow status of an MCE.

3.12 MX Multichannel Scaler Functions

3.12.1 Counting Functions

mx mcs start() - Starts the MCS counting.

mx mcs stop() - Stops the MCS from counting.

mx mcs is busy() - Checks to see if the MCS is counting.

3.12.2 Data Handling Functions

mx mcs clear() - Clears the data in the MCS.

mx mcs read all() - Reads all values from the MCS.

mx mcs read scaler() - Reads the values from the specified scaler channel in the MCS.

mx mcs read measurement() - Reads all the scaler values from the specified measurement in the MCS.

mx mcs read timer() - Reads the timer channel from the MCS.

3.13. MX MOTOR FUNCTIONS 37

3.12.3 Parameter Setting Functions

mx mcs get mode() - Gets the counting mode for the MCS.

mx mcs set mode() - Sets the counting mode for the MCS.

mx mcs get measurement time() - Gets the preset measurement time for the MCS.

mx mcs set measurement time() - Sets the preset measurement time for the MCS.

mx mcs get measurement counts() - Gets the preset measurement count for the MCS.

mx mcs set measurement counts() - Sets the preset measurement count for the MCS.

mx mcs get num measurements() - Gets the number of measurements for the MCS.

mx mcs set num measurements() - Sets the number of measurements for the MCS.

3.13 MX Motor Functions

3.13.1 Motor status functions

mx motor get position() - Gets the motor position in user units.

mx motor get status() - Gets a 32-bit set of status flags that report the current state of the motor axis.
These bits include:

busy - is a move in progress?

positive limit hit

negative limit hit

home search succeeded

following error

drive fault

axis disabled

open loop

controller disabled

soft positive limit hit

soft negative limit hit

software error

mx motor get extended status() - This function reports both the position of the motor and the motor status flags
in one call. In many situations, calling this function is more efficient performing than two separate calls to
mx motor get position() and mx motor get status().

38 CHAPTER 3. DEVICE API

3.13.2 Alternate motor status functions

These functions report the state of only a single bit in the status flag described above.

mx motor is busy() - Check to see if a commanded move is still in progress.

mx motor positive limit hit() - Checks to see if the positive limit switch has been hit.

mx motor negative limit hit() - Checks to see if the negative limit switch has been hit.

3.13.3 Motor motion functions

mx motor move absolute() - Moves the motor to an absolute position in user units.

mx motor move relative() - Moves the motor by a relative distance in user units.

mx motor array move absolute() - Moves an array of motors to absolute positions in motor units.

mx wait for motor stop() - Waits for a motor move to complete. Use one of the motor status functions if you want
to check the motion status without blocking.

mx wait for motor array stop() - Waits for an array of motors to stop moving.

3.13.4 Motor abort functions

mx motor soft abort() - Tells the motor to stop moving in a “nice” fashion so that it does not lose track of its
position.

mx motor immediate abort() - Tells the motor to stop moving as soon as it can.

3.13.5 Setting the motor position

mx motor set position() - Sets the motor position in the controller to the requested value, if this is possible.

Many controllers have restrictions on what values the position can be set to or do not allow the position to be set
at all. A common restriction is to only allow the current position to be set to zero.

3.13.6 Home search

mx motor find home position() - Performs a home search in the requested direction.

mx motor is at home switch() - Finds out whether the motor is currently at the home switch.

3.13.7 Continuous moves

mx motor constant velocity move() - Moves the motor in the requested direction until the motor move is aborted
or until the motor reaches a hardware or software limit.

3.13. MX MOTOR FUNCTIONS 39

3.13.8 Motor speeds

mx motor get speed() - Get the programmed motor speed from the controller.

mx motor set speed() - Set the programmed motor speed in the controller.

mx motor get base speed() - Get the programmed motor base speed from the controller.

mx motor set base speed() - Set the programmed motor base speed in the controller.

mx motor get maximum speed() - Get the programmed maximum speed from the controller.

mx motor set maximum speed() - Set the programmed maximum speed in the controller.

mx motor save speed() - Saves the current programmed motor speed so that it can be restored at a later date.

mx motor restore speed() - Restores the motor speed most recently set by mx motor save speed().

mx motor set speed between positions() - Sets the motor controller’s speed such that it will travel between the two
requested positions in the requested amount of time. This function is more general than mx motor set speed()]
since it will also work for pseudomotors whose positions are non-linear functions of the underlying real motor.
However, the function works for real motors as well.

3.13.9 Motor acceleration

mx motor get acceleration type() - Used to find out what type of acceleration parameters are used by this con-
troller.

mx motor get acceleration parameters() - Get acceleration parameters used by the controller.

mx motor set acceleration parameters() - Set acceleration parameters used by the controller.

mx motor get acceleration time() - Calculates the total time required for the motor to accelerate from zero to the
programmed speed for the motor.

mx motor get acceleration distance() - Calculates the total distance required for the motor to accelerate from zero
to the programmed speed for the motor.

Motor acceleration is specified in a variety of different ways by different controllers such as steps/sec**2, acceler-
ation time, acceleration slope, and so forth. Currently, MX uses the form of the acceleration parameters that is native
to each controller rather than trying to force them all to conform to one particular scheme such as steps/sec**2.

3.13.10 Pseudomotor position calculation functions

mx motor compute pseudomotor position from real position() - This function takes the supplied real motor po-
sition and converts it to the corresponding pseudomotor position.

mx motor compute real position from pseudomotor position() - This function takes the supplied pseudomotor
position and converts it to the corresponding real motor position.

40 CHAPTER 3. DEVICE API

3.13.11 Scan related functions

mx motor compute extended scan range() - Uses the provided motor scan range to calculate an extended scan
range that adds enough acceleration and deceleration distance such that the motor will already be moving at the
slew speed when it reaches the start of the originally specified scan range.

3.13.12 Getting and setting other motor parameters

mx motor get parameter() - Reads the value of one or more motor parameters from the controller.

mx motor set parameter() - Sets the value of one or more motor parameters in the controller.

This pair of functions is used to get and set other parameters that a given record type may define for itself. The
speed and acceleration support above is built on top of these two functions. A variety of other parameters such as PID
servo loop gains can be controlled via these functions.

3.14 MX Relay Functions

mx relay command() - Opens or closes the relay.

mx get relay status() - Checks to see if the relay is open or closed.

3.15 MX Scaler Functions

3.15.1 Preset time functions

mx scaler read() - Reads the current value of the scaler without stopping it.

mx scaler clear() - Stops the scaler, clears its value and rearms the scaler.

mx scaler read and clear() - Combines the two operations above.

mx scaler overflow set() - Checks to see if the scaler has overflowed its maximum value.

3.15.2 Preset count functions

mx scaler start() - Start the scaler counting to a preset value. The scaler is assumed to generate a gate signal while
it is counting.

mx scaler stop() - Stop the scaler from counting and removes the gate signal.

mx scaler is busy() - Is the scaler still counting?

3.16. MX TABLE FUNCTIONS 41

3.15.3 Counter mode functions
mx scaler get mode() - Finds out whether the scaler is configured to be in preset time or preset count compatible

mode.

mx scaler set mode() - Sets the counter mode.

mx scaler set modes of associated counters() - Ensures that the other counter channels in a module with multiple
counters are set to counter modes that are compatible with the given scaler.

3.15.4 Dark current functions
mx scaler get dark current() - Gets the dark current for the given scaler in counts per second. This does not actu-

ally perform a dark current measurement. It merely returns the previous value that was set by the mx scaler set dark current()
function.

mx scaler set dark current() - Sets the dark current for the given scaler in counts per second.

3.16 MX Table Functions
This set of functions controls a diffractometer/goniostat table so that the table can make pure rotations and tranlations
relative to an arbitrary point on the table.

mx table get position() - Gets the current position of the specified table pseudomotor.

mx table set position() - Sets the current position of the specified table pseudomotor.

mx table move absolute() - Moves the specified table pseudomotor to the requested position.

mx table is busy() - Checks to see if the specified table pseudomotor is currently moving.

mx table soft abort() - Tells the table pseudomotor to stop moving in a “nice” fashion so that it does not lose track
of its position.

mx table immediate abort() - Tells the table pseudomotor to stop moving as fast as it can.

mx table positive limit hit() - Checks whether the limit for the specified table pseudomotor has been hit.

mx table negative limit hit() - Checks whether the limit for the specified table pseudomotor has been hit.

3.17 MX Timer Functions

3.17.1 Preset time functions
mx timer start() - Starts the timer counting for the specified number of seconds.

mx timer stop() - Stops the timer from counting and removes the gate signal.

mx timer is busy() - Is the timer still counting?

42 CHAPTER 3. DEVICE API

3.17.2 Preset count functions
mx timer read() - Reads the elapsed time in seconds without stopping the timer.

mx timer clear() - Stops the timer, clears its value and rearms the timer.

3.17.3 Timer mode functions
mx timer get mode() - Finds out whether the timer is configured to be in preset time or preset count compatible

mode.

mx timer set mode() - Sets the timer mode.

mx timer set modes of associated counters() - Ensures that the other counter channels in a module with multiple
counters are set to counter modes that are compatible with the given timer.

Chapter 4

Interface API

4.1 MX CAMAC Functions
mx camac() - Sends a CAMAC FNA command to the crate controller.

mx camac qwait() - Repeatedly sends a CAMAC FNA command to the crate controller until Q=1 is received.
Needed by E500 motor controllers.

mx camac send control word() - Sends a Z, C, or I command to the crate controller.

mx camac get lam status() - Checks the Look At Me (LAM) status for the crate controller.

4.2 MX GPIB Functions
mx gpib open device() - Makes a connection to the GPIB device at the specified GPIB address.

mx gpib close device() - Shuts down the connection to the GPIB device at the specified GPIB address.

mx gpib read parms from device() - Reads several GPIB parameters from the device at the specified GPIB ad-
dress, such as the secondary address, I/O timeout, EOI mode, and EOS characters.

mx gpib write parms to device() - Writes the GPIB parameters to the device at the specified GPIB address.

mx gpib read() - Reads up to a specified number of characters from the GPIB interface.

mx gpib write() - Writes up to a specified number of characters to the GPIB interface.

mx gpib getline() - Gets a line of text from the GPIB interface.

mx gpib putline() - Sends a line of text to the GPIB interface.

mx gpib interface clear() - Sends an interface clear signal to the GPIB bus.

mx gpib device clear() - Send a device clear (DCL) signal to all the devices on the GPIB bus.

43

44 CHAPTER 4. INTERFACE API

mx gpib selective device clear() - Sends a selective device clear (SDC) signal to a particular device on the GPIB
bus.

mx gpib local lockout() - Perform a local lockout (LLO) on the GPIB bus.

mx gpib remote enable() - Enable remote control for the specified device.

mx gpib go to local() - Changes the specified device to local mode (GTL).

mx gpib trigger() - Triggers the specified device (GET).

mx gpib wait for service request() - Waits until an SRQ signal is received.

mx gpib serial poll() - Performs a serial poll on the specified device (SPE and serial poll).

mx gpib serial poll disable() - Disables serial polling (SPD).

4.3 MX Portio Functions
These functions are used to access I/O ports on x86 platforms.

mx portio inp8() - Reads an 8 bit value from an I/O port.

mx portio inp16() - Reads a 16 bit value from an I/O port.

mx portio outp8() - Writes an 8 bit value to an I/O port.

mx portio outp16() - Writes a 16 bit value to an I/O port.

mx portio request region() - Asks the operating system for access to the specified range of I/O ports.

mx portio release region() - Releases control of the specified range of I/O ports back to the operating system.

4.4 MX RS-232 Functions
mx rs232 getchar() - Gets a single character from the specified serial interface.

mx rs232 putchar() - Sends a single character to the specified serial interface.

mx rs232 read() - Reads up to a specified number of characters from the serial interface.

mx rs232 write() - Writes up to a specified number of characters to the serial interface.

mx rs232 getline() - Gets a line of text from the serial interface.

mx rs232 putline() - Sends a line of text to the serial interface.

mx rs232 input is available() - Checks to see if there are any characters in the input buffer for the serial interface.

mx rs232 discard unread input() - Discards the contents of the input buffers for the serial interface.

mx rs232 discard unwritten output() - Discards any characters that are still in the output buffers for the serial
interface.

4.5. MX GENERIC INTERFACE FUNCTIONS 45

4.5 MX Generic Interface Functions
Warning: The Generic Interface Functions are deprecated, at least in their current form.

The generic interface class is essentially a catchall for various types of interfaces that do not fit somewhere else.
It is quite common for motor drivers (which control a single motor) to have an associated generic interface driver
which manages all of the axes belonging to the controller as a whole. Typically, if a driver needs to have a place to
put information about all the resources controlled by a controller as a whole, the best place to put these is in a generic
interface driver. Thus, for a Compumotor 6K motor controller, each axis has its own separate motor record, but the
controller as a whole has a generic interface record which is used to manage sending and receiving ASCII commands
to and from the controller.

Many, but not all, generic interface drivers have ways of sending and receiving ASCII strings. For those that do,
the following functions are available. Please note that mx generic getline() and mx generic putline()] do not exist
yet, but are scheduled to be added to the library.

mx generic getchar() - Gets a single character from the specified generic interface.

mx generic putchar() - Sends a single character to the specified generic interface.

mx generic read() - Reads up to a specified number of characters from the generic interface.

mx generic write() - Writes up to a specified number of characters to the generic interface.

mx generic input is available() - Checks to see if there are any characters in the input buffer for the generic inter-
face.

mx generic discard unread input() - Discards the contents of the input buffers for the generic interface.

mx generic discard unwritten output() - Discards any characters that are still in the output buffers for the generic
interface.

46 CHAPTER 4. INTERFACE API

Chapter 5

MX Variable Functions

5.1 Generic variable functions
mx send variable() - Sends the value field of a local variable record to the remote server.

mx receive variable() - Receives the value field of a local variable record from the remote server.

mx get variable parameters() - Gets the dimensionality and variable type of a local variable record.

mx get variable pointer() - Gets a pointer to the data values for a local variable record.

5.2 One-dimensional variable functions
Since one-dimensional arrays are more common than higher-dimensional arrays, there are a number of convenience
functions specifically for working with them.

mx get 1d array() - For a given one-dimensional variable record pointer, this function verifies that the variable is
the correct data type. It then gets both the number of elements and a pointer to the data values.

mx get 1d array by name() - For a given MX record list pointer, this function tries to find a matching one-dimensional
variable record with the listed name and data type. It then returns the number of elements and a pointer to the
data values.

mx test 1d array() - Verifies that the specified record is a one-dimensional variable record with the requested field
type and number of elements.

5.3 Scalar variable functions
Several convenience functions for scalar values are available. The set of available convenience functions is incomplete
at the moment. I will fill it out in the near future.

The following get functions require a record list pointer and a record name.

mx get long variable by name()

47

48 CHAPTER 5. MX VARIABLE FUNCTIONS

mx get unsigned long variable by name()

mx get double variable by name()

mx get string variable by name()

The following set function requires a pointer to the MX record.

mx set long variable()

Chapter 6

Server API

6.1 MX Server Functions
mx get() - This is a macro that gets the value of a zero dimensional value (a scalar) from a remote MX server.

mx put() - This is a macro that sends the value of a zero dimensional value (a scalar) to a remote MX server.

mx get array() - Receives the value of an MX record field from a remote MX server.

mx put array() - Sends a local value to an MX record field on a remote MX server.

mx network send message() - Sends an MX protocol message to an MX server.

mx network receive message() - Receives an MX protocol message from an MX server.

mx socket send message() - This is a low level function that sends an MX protocol message on the specified socket.

mx socket receive message() - This is a low level function that receives an MX protocol message on the specified
socket.

mx socket send error message() - This is a low level function that sends an MX protocol error message on the
specified socket.

49

50 CHAPTER 6. SERVER API

Chapter 7

MX Scan Functions

There is only one scan record specific function available, namely,

mx perform scan() - Executes the specified scan from the MX database.

It is the only function that an application program using standard scan drivers should need to invoke.

7.1 Scan driver functions
There are a variety of other scan related functions that are mostly intended for use by scan device drivers, rather than
application programs. These functions are normally invoked behind the scenes by mx perform scan(), but a custom
scan driver is not required to use any of them if it has special needs. The functions are passed pointers to MX SCAN
structures rather than pointers to MX RECORD functions.

mx standard prepare for scan start() - This is the default routine that handles standard types of preparation before
the beginning of a scan such as opening datafiles and starting plotting programs.

mx standard cleanup after scan end() - This is the default routine that closes down all of the resources acquired
by mx standard prepare for scan start().

mx setup scan shutter() - This routine checks to see if the scan is using an X-ray shutter and initializes the associ-
ated data structures.

mx setup scan enable() - This routine checks to see if the scan will be using a scan enable/disable interlock and
initializes the associated data structures.

mx scan handle data measurement() - When it is time to perform a measurement, this routine invokes the function
used by this scan’s measurement type to perform measurements.

mx scan handle pause request() - When the user requests that a scan be paused, this function passes control to the
installed pause request handler.

mx set scan pause request handler() - Allows an application program to redefine the default pause request han-
dler.

51

52 CHAPTER 7. MX SCAN FUNCTIONS

mx default scan pause request handler() - This function merely prints out a message that a pause has been re-
quested.

mx scan display scan progress() - This function displays the current status of the scan to the user. Typically, it is
used to present the results of the most recent measurement.

mx clear scan input devices() - This function makes the current scan’s input devices ready to make the next mea-
surement.

mx handle abnormal scan termination() - This function is invoked any time a scan is abnormally terminated, both
for user requested aborts and for failures in the beamline hardware such as hitting a limit switch.

mx scan restore speeds() - Restores all the motor speeds to the values they had before the start of the scan.

mx log scan start() - If scan logging is enabled, this function writes a “start of scan” message to the scan log.

mx log scan stop() - If scan logging is enabled, this function writes an “end of scan” message to the scan log.

mx setup topup interlock() - This is an APS specific scan function that sets up an scan interlock with the Advanced
Photon Source topup injection. This function tries to ensure that measurements are not made during a topup
injection and retakes a measurement if necessary.

mx scan finish record initialization() - Performs initialization steps that must be performed for all scan records. It
is intended to be used in the xxx finish record initialization driver function for a particular scan type.

7.2 Measurement driver functions
Each type of measurement that an MX scan record can perform such as preset time, preset count, etc. has an associated
measurement type driver. These functions are passed pointers to MX MEASUREMENT structures.

mx measure data() - This function performs the detector measurements required for the current step in the scan.

mx configure measurement type() - Before a scan starts, this function reconfigures the devices used by this scan
to be ready for the requested measurement type. This may involve things like reconfiguring which devices have
presets and so forth.

mx deconfigure measurement type() - After a scan ends, the devices involved in the scan are reprogrammed to
revert back to the default measurement type, namely, preset time.

mx prescan measurement processing() - Performs any measurement related functions required before the first data
point is taken.

mx postscan measurement processing() - Performs any measurement related functions required after the last data
point is taken.

mx preslice measurement processing() - For a multidimensional scan, this function performs any measurement
related functions required before the first data point of the current slice is taken.

mx postslice measurement processing() - For a multidimensional scan, this function performs any measurement
related functions required after the last data point of the current slice is taken.

7.3. DATA FILE DRIVER FUNCTIONS 53

7.3 Data file driver functions
Each type of data file format that can be generated by an MX scan record has an associated data file driver. These
functions are passed pointers to MX DATAFILE structures.

7.3.1 Data file handling functions
mx datafile open() - Opens the file that the data will be written to.

mx datafile close() - Closes the file that the data have been written to.

mx datafile write main header() - This function writes out the header information required by this data file type.

mx datafile write section header() - For data files that are broken up into sections, this function writes out the
header for the current section.

mx datafile write trailer() - This function writes out any trailer information required by this data file type.

mx add measurement to datafile() - This function goes to each device in turn and copies the data for this datapoint
to the data file.

mx add array to datafile() - For some scan types, the results of the measurement are already located in arrays in
the memory of the MX application program. For this case, this function copies the contents of those arrays to
the data file.

7.3.2 Data file version number functions
An MX scan record will autoincrement the version number for the next scan data file, if and only if, everything
after the last period ’.’ in the filename consists only of the digits ’0-9’. The following functions handle the job of
autoincrementing the number.

mx parse datafile name() - This function checks to see if the current data file name has a version number and splits
the file name into the version number and the version independent part.

mx construct datafile version number() - Constructs a new data file version number from the old version number.
This function wraps back to zero if the next version number would increase the number of digits in the version
number. For example, if the most recently created data file had version number ’.999’, the next version number
will be ’.000’.

mx update datafile name() - This function replaces the old version number with the new version number.

7.4 Plot driver functions
Each type of scan progress plotting program that can be used by an MX scan record has an associated plot driver.
These functions are passed pointers to MX PLOT structures.

mx plot open() - Initializes the connection to the plotting program.

mx plot close() - Shuts down the connection to the plotting program.

54 CHAPTER 7. MX SCAN FUNCTIONS

mx add measurement to plot buffer() - This function goes to each device in turn and copies the data for this
datapoint to the plot buffer.

mx add array to plot buffer() - For some scan types, the results of the measurement are already located in arrays
in the memory of the MX application program. For this case, this function copies the contents of those arrays
to the plot buffer.

mx display plot() - This function tells the plotting program to update its scan progress windows to include all the
measurements that have been sent to it.

mx plot set x range() - Sets the X axis limits of the scan progress window.

mx plot set y range() - Sets the Y axis limits of the scan progress window.

mx plot start plot section() - For multidimensional scans, MX at present only supports displaying the current one-
dimensional slice of the scan in the scan progress window. mx plot start plot section() tells the plotting
program that a new one-dimensional slice has just started.

mx plotting is enabled() - Checks to see if the user has requested that a scan progress graph be displayed.

mx set plot enable() - This function sets the flag that is used by mx plotting is enabled()].

